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CHAPTER I

INTRODUCTION AND SU:DMARY

This dissertaticn 1s concerned with the control of a one-
dimensional diffusion process. The concept of a controlled diffusion
process used here 1s almost identical to that defined by Mandl [16].
The system we both consider is a stationary diffusion process defined
on a compact interval of the real line The drift and diffusion coeffi-
cients depend upon a staticnary contrcl vhich is state dependent The
costs generated by the prccess are functions of both the control and
the sample path of the process. Mandl's concept of a controlled diffu-
sion process 1s generalized by allowing controls to be vector=valued
with the set of admissible control actions defined by a piecewise
continuous set-valued function on the state space

If the process is controlled by a single person and the process
generates a single stream of costs, then we have the ordinary optimal
control problem of Chapter II. These problems involve finding controls
which minimize expected costs In the case of undiscounted costs.
Mandl's results ar~ generalized to account for our previously mentioned
restriction on admissible control funzticns  With discounting, the

minimal expected discounted cost as a function of the initial state of

the process 1is shown to be the unique solutien ot a differential equation

A necessary and sufficient condition is given for a contzol) to yield the

minimal expected discounted cost, and a method is presented for computing

Wbt 1 v

-
k
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this optimal control

In Chapter III, we suppose the process 1s controlled by two
persons, one plaver who chooses one component of the control wants to
minimize the expected cost, while the second player who chooses the

other control component wants to maximize the expected cost- The

problem of controlling this process 1s a sequential; zero sum; two-persoa

game. Moreover, by an optimal control 1s meant a saddlepoint of the
expected cost function. The expected cost associated with a saddlepoint
ig called the value of the game, The value, 1f it exists, is shown to
be the unique solution of a differential equation. Furthermore, a
necessary and sufficient condition is given for a control to be optimal.
If the diffusion process is controlled by N persons and it gen-
crates N sgtreams of costs, then the problem of controlling the process

: . th
bcomes a sequential, non-zero sum, N-person game. Suppose the i

player, who operates the ith control component, wants to minimize the
expected costs of the :L':h cost stream. Then by an optimal control
will be meant one that is a Nash equilibrium point of the expected costs
corresponding te all admissible controls. In Chapter III each Nash
equilibrium point is shown to be the unique solution of a differential
equation, and a necessary and sufficient condition is given for a cuu-
trol to be optimal

A piecewise continuous optimal control may nct exist for a
problem of any tipe mantisned abcve In Chapter II, a plecewise con-
tinuous optimal control is shown to exist for the single person control

problem under a variety of alternative conditions. One is that the

actlon set in each state is finite and state independent, and the drift,
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diffusion, and continuocus movement costs are analytic in the state A
second is that the action gset in each state be convex. the diffusion
coefficient be action independent, the drift coetficlent be affine in
the action, and the continuous movement cost be stiictly convix in the
action. Conditions of the latter type are also given for multiperson
control problems,

Chapters II and III provide several appli:zaticns of the models
developed herein  The ordinary optimal control model is applied to the
problems of controlling a reservoilr, controlling pcllution, optimizing
2 queueing system, and making optimal investments The zero sum, two-
person game model is applied to the pvoblem oif determining how many
people should be receiving welfare The non-zero sum N-person game model
is applied to the problems of pollution and warfare  Chapters Il and
1I1 also include aumerous example calculations cf the optimal control for
each type of model; some of these examples pertain to the appiications

that are discussed

i
1
i
i
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CHAPTER 1I
SINGLE PERSON CONTROLLED DIFFUSIONS

This chapter describes a class of single person controlled one-
dimensional diffusion processes where the contrel 1s a vector-valued
function on the state space. These processes generate costs, and the
optimal contrcl problem is tc choose an admissible control that mini-
mizes expected costs  The following three scctions provide results for
discounted costs. undiscounted costs with a non-coqservacive Proéess, and
undiscounted costs with a coaservative process Generalizing Mandl
[16], the major rcsults in these sectlions are necessary and sufficient
conditions for a control t2 bc optimal as well as chuaracterizations of
the expected costs corresponding to an optimal control  The method for
solving a problem 1is basically the same in each case A differential
equation is sclved and the solution is used to détermine the optimal
control.

Section 4 establishes sufficient conditions for the existence of
piecewise continuous optimal centrols The remaining four sections
discuss fous potential applications of single person controlled diftu-
sion processes  Each such scction describes how Lhese processes can
be used as models of the physical systems being considered, and then

examples are provided tc demonstrate how actual problems ceuld be

solved
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he Controlled Diffusion Process,

Consider a diffusion process
interval [ro,rll of the real line K,

person. For some positive integer n

control 1s a vector=valued function on

a polut=-to-set map from S dnto K su

uous in the Hausdorff metri¢ and for ca

empty compact subset of K . Each timge

s, an action a 1s chosen from the

ble controls consists of all piecewise

N . .n
with range in E such that the action

function a( ) 1s an admissible contro

Throughout this chapter it should be ¢l
letter a denctes an admiséible contro

action a ¢ As for some s t S In t

such that ! 1s non-void  Although th

1t is not known whethier in gencral M #
In order to chatracterize the map

all compact subsets of K We definc

n

any a ¢ E and Y - Z let

For any Y

pelrt @ Y

and the set Y

Y,) = sup D(a

;l‘\l

Then (Z2,¢) 1s a meLric space with the

= 3t A v ——————— S P e b - 7 ‘

with state.space §,

D(a,Y) be the

a compact

o

which is controlled by a siogle

o 1 o A A Ui

. n
and some compact set K C L, the

i b oo,

Let A be

$ with range X s

¢h that AS is plecewise contin-

ch s v § the set AS is 4 non-

. the process is obgserved in state
of admissi-

set As The setr M

contiruous functions a( ) on S

a(s) v A for each s v § A

1 4f and only if a( ) M
car froem the context whether the

1 aea( ) =M or an admissible

he sequel we shall assume AS 1s
is is always true vhenever X C E,
¢ if K o Hn, n 2

AS. let the set 7 consist ot

a metric oooaon 4 0oas follows Fou

lLuclaidean distance betveen the

AY i e

) \,) ~ €. - N e

YL+ sp D(u,Yl)
- v Y

HausdoriZ metric, and the map

e e e e v T ALY AL + Y ,‘



Ly from § inro (Z,p) 1is continuous at s for all but a finice

number of 8 ¢ S

It can be shown (for cxample, Hogan [12]) that AS is continuous

in the Hausdorff metric at the point s if and only {f A8 is both
upper semi-continuous, that is, a closed map, and lower semi-continuous

w “ .
at 8  The map A, 15 upper seml-continuous at s 1t (1) s* +s

(11) ai ~ a", and (111) ui € A 4y together imply a ¢ A o - The
8

map AS is lower semi~continuous at s  if (i) 81 » 5" and
(11) a ¢ As* together imply theve exists a sequence ot actions
al ¢ Asi such that a® - a°

The definition of a controlled diffusion prozess is a slight
generalization of Mandl's [16, p. 157] Let d(s.a) be a continuous.
pesitive real-valued function en 8§ x K Then for af{ ) « M the
piecewise continuous function d(s,a(s)) is tie ditfusion coefiicient
of the process Similarly, let b(s,2) be a continucus reali-valucd
function on § - K so that b(s,a(s)) s the drift coefficient of
the diffusion process.

Following Mandl, with a given control a(-) ¢ M cthe diffusion

process is completely specified by the generalized classical differen-

tial operator

2

d(s,a(s))—g; + b(s,u(s))ag
ds® ®

D

M

togecher with Feller's [7,9] boundary condition

—-f—
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k,v(x,) + 6,|v(r,) - ‘/;(S)dn (s)’ - (-l)jﬂ v (r,)
17 51 IR 3 37
i
1 oo 0 =0, i=ol
)
:
3
where v(s) 4s some function whose second derivative is plecewise §
HE
continuous on S . At each ooundary Iyt the four non-negative %
) parameters “j' Cj' “j and :j' at least one of which must be positive,
correspond respectively to the phenomena of absorption, adhesion, reflec-
o tion and instantaneous return Corresponding to 0j is the probability '
distribution function ., (s) wheie J( dyj(s) =1
J .
. (rgiry)
Feller {8) and Ito and McKean [14]) present partial probabilistic
o interpretacions of these bounda.y cozditions in the case of diffusion
| processes, and Ito and McKean [13] present a corplete description in the
case of Brownlan moticn. Their results are brierly descrihed here,
. The reflecting barrie:r prccess with « = o = & = O tor

] J
j = 0,1 can be desc:ibed by constructing a diffusion process on E .

Wath L e r - r

1 0 detine the point-tu-set map t S * E as

f(s) = Ix : E|l x=as+2nl or ~»= 21, - 5 + 2nl

tor some no= (G -1 -2

Ncte that Uit(s) =t and e ancerse ot Tiv) o= oy s = tis)
£ 5
equils w unijue s DA N TN S ) ot e o Ay

the dras . sne Q=g v Sovr Lol e SR IR TI I

]
]
}
] .,
|
|

et s o

S W i dey ity adg .
A : A
v



L]

equal to the drift and diffusion coefficients, respectively, of the

reflecting ba:rier process rt the point f-l(x) If the constructed

v w——

process 1s represented by the sample path t ~ x(t) then the sanple

T

path st(t) = f'l(x(t)) represents the reflecting barrier process,

A diffusion process s{(t) without retlecting barriers

(HO =7 < 0) tehaves like the reflecting burricr process s¥(t) up to

the first passage time m = min{ct | s*(t) = r, or s%(t) = r,} . Then,

0 1
1f st(m) = rj. s(t) = rj for an exponential holding time eJ with

conditional law

P(e

-4
w

At time m + ej eitler the process terminates (absorption) with proba-
biiity -:j/(ﬁj + <j) or it starts afresh by jumping to the point

o€ (ro,rl) with conditional law

Pls(m+e ) = 5, e,s7) = .o (d)/ (5 + <)
¢ 3 " ] [RE RN 3

The interpretation of the boundary coundition c¢f retlection com-

bined with absorption snd/or adhesion ('ﬁ(u4 * 'J‘ . O;Oj = Q)

rather more complicated. Briefly, with ¢ 0 <the process behaves
J

1s

like the reflecting barrier process with a stochastic time scale change
; that counts standard tine while s+(c) Fr Hut 1uns 3lov on the
: parrier with the result that, compared to the reflecting barrier process
this process langers at the boundary longer than it should. With

15 killed .o the

~, * 0 the process belaves as if < =0 wunril i-

§—:

<l w

%-

Lad
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boundary r at a random time that ic a function of cthe visiting set

]
it ]| s() = rj} S § & nJ(<J + oj) > 0 and the passage time
m(:) = dnfit > = | s(t) ¢ rj} then the conditional prcbabilicy
Pm(-) = 0 | s(1) = ri) -1

The process with both reflection and instantaneous :etuin occurring at

a boundary (r > 0) can be constructed from a process with both

1%
reflectlon and absocption uccurripy at the boundary (“J\J > 0) as was
done by Mandl (16, pp 64-66]

The diffusion process generates costs according to 1ts sample
path and control (Mandl [16. p. 148]) These ccsts are of three types

The continucus movement cost s the cost :rdte per unit time. Let
c{s,a) be a continuous function from S = K ainto E . It s(t) 1is
the sample path of the process and a(s) the control then the integral
of c(s(t),a(s(t))) over a time 1nterval equais the teotal continuous
movement cost generated cver this time interval

The second kind ct cost is associated wirh jumpe tinstantaneous
returns) by the process from rthe boundaries. For 3 = 0 1  let VJ(S)
be a function frem S into E which is integrable with respect to
uJ(S) . If the process jumps from boundary rj to the point
S (rO,rl) at tim=2 ¢ tnen there arises at this c;me the 1ump cost
v .(s) . Denote by ¢j(c s) t -0, s¢585,3=20,l1 the i1nteger-valued
random variable representing the number c¢f jumps made by tne process

up through time t from boundary xJ into the 1ntecrvau [ro.sl

Then the total cost due to jumps from r_ up tnrough time t equals
J

-9-
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the integral over [ro,r,] of v, (s}, (t,ds)

3

The third kind of cost depends upon the termination of the
process. If the process 1s absorbed at boundary rj, then at this
termination time there arises the cost Kj’ j=0,1.

Following Mandl {16, p. 149), if C(t) 1is the total of the costs

generated by the proccess up through time t, then the Laplace-Stieljes

transform

oc

f e~ tdc(v)

0

can be regarded as the total, discounted, infinite horizom cost gener~-
ated by the process, where the discount factor is e and ) - 0 .
Given a controlled diffusion process, admissible control, and discount
factor, let v(s) denote the conditional expectation of the discounted

cost of this process given its initial state s. that is

o

v(g) = ESJ[.e-lch(t)

0

dMandl [16, p. 149] proves the following result.

Theorem 1. The expected discounted cost v(s) corresponding to

a(-) e M 1is the unique function on S such that v'(g) 1is centinuous,

(1) d(s,a(s))v'"(s) + bys,a(s))v'(s) = v(s) + c(s,als)) = O

holds for every s ¢ (ro,r ) which is a continuity point of a(s), and

-1D-
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- _ - (1)
(2) (‘3j + Kj)v(rj) GJS[(V(S) + vj(s))th(S) (-1) -Jv (rj)

+ oJ(Av(rj) - c(rj,a(rj))) - Kjxj =0, §=0,1.

If the process is non-conservative and neither boundary is purely

adjesive, that is,

o + Ky > o, Kj + ﬂj + ej >0, j=0,1,
then Mandl (16, p. 152] shows that the expected total undiscounted
cost v(s) = E’C(W) is finite and is the unique solution of (1) and
(2) for A = 0 .
If the process is conservative (<0 + <l e 0), then the total
undiscounted cost a4y ve infinite. The number @ 1in the following

theorem by Mandl (l¢, pp. 152-157, 168]) can be interpreted as the mean

cost per unit time.

Theorem 2. Let A L 0 and assume at least one boundary is not

purely adhesive, that is, " + 60 + T + el >0 . If v(s,r) 1is the
expected discounted cost corresponding to * > 0 and some a(-) ¢ M,
then

lim Av(s,x) = & and 1lim Egv(s,h) = w(s)
140 A0 98

-11-
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where ¢ 1s some number independent of the state s, and w(s)

some absolutely continuous function on S . Moreover,

P(linm :'lc(c) = C) =1

e

and (O,w) 1is the unique pair satisfying

(3) d(s,a(s))w'(s) + b(s,a(s))w(e) - © + c(s,a(s)) =0

for every s ¢ (ro,rl) which is a continuity point of a(s), and

8
%) ej I{fw(y)dy + VJ(S)} duj(s) + (-l)j--'jw(rj)
S rj

+cj(c(rj;a(rj)) -2) =0 j = 0,1,

2. The Discounted Cost Case.

Let v(s,a) = v(s) denote the expected discounted cost of a

process corresponding to the admissible control a e M - Then v(s

will be the unique solution of (1), (2). The minimal expect.d dis-

counted cost v(s) 1s defined to be

-12-
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l ¥(s) = inf v(s,a)
aeM
An admissible control a € M 1s said to be an optimal control if
Jﬁ v(s,4) = 0(8) for ali s € S . The results here for the discounted
- cost case generalize Mandl's [16, pp. 158-173) results for undiscounted

costs. The main results of this section are Theorem 3, which character-

izes the minimal expected cost, and Theorem 6, which provides necessary

and sufficient conditions for an admissible control to be optimal

Theorem 3. The minimal expected discounted cost v(s) 1is the unique

solution of the equation

(5)  ¥"(s) + min {d(s,a) ‘[b(s,a)v'(s) ~ \v(s) + c(s,a)]} = O
aclA
s

satisfying

.. . . . _ o3 o
(6) (wj + KJ)V(rj) Oj 5/(V(S) + vj(s))duj(s) (-1) jV (rj)

%

aj(jv(rj) - \j) - ‘<j"\j = 0, j= 0,1,

where 3 = min c(r, ,a) , j = 0,1 .
aEAr )

]
I
' A
|




e

Two preliminary lemmas will be provided before the proof of
Theorem 3 is presented, The first lemma, stated without proof, is a
slight modification of a selection theorem due to Dubins and Savage
[5, Chap. 2.16) (see alsc Maitra (15]). I am grateful to Robert Rosen-
thal for suggesting the appropriateness of Lusin's Theorem in the proof

of Lemma 5.

Lemma 4. If h(s,a) 1s a continuous real-valued function on S x K,
then there exists a Borel measurable function £(s) on S into K

such that h(s,f(s)) = min h(s,a) and f(s) ¢ As for each s ¢ S.
aelh
8

Lemma 5 Suppose f( ) 4is a function on S into K which is measur-

able with respect to Bovel measure 1 and satisfics f(s) ¢ A for

eaclt s € S+ Then for every ¢ > 0 there exists a measurable subset

S C S and an admissible coatrol a(*) € M such that L(S - S) < ¢ and

a(s) = f(s) for all s ¢ S

Proof. Lusin's Theorem (e.g. Royden [181) is valid for vector-valued

measurable functions, so for every ¢ - 0 there exists a measurable
subset S' C S and a continuous function g(s) on S such that

L(S - §') < % and f(s) = g(s) for all s ¢ S' . It remains to show
that g(s) coincides with some admissiblce cuntrol on a large enough
subset of §'

Let S" = {s ¢ S,g(s) ¢ Ag so clearly s' ¢ 8" and

[ %

L(S - 8") < 3 - Since g(s) and A, both have closed grap.s, §"

!

is closed. Thus there ¢xists a sequence {Si; of disjoint closed

~14-
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intervals such that = $" . Without loss of generality, assume

N

0 ¢
i-lqi
Hsl-i u82 > ++s,  go that for some integer N, (S - ,\.S,) =

3 Note

- i=1"1

that there exists an admissible control a(*) ¢ M such that a(s) = g(s)

L s

N N
< - g U
for all s ¢ i-lsi « If wa set S s'nN (ielsi)’ then
- N N
- - 1 - J - - [] . - " " o ¥
(S = 8) S u(S -8 +us - YUs ) =u(s~58") +ulS -8 +u(s" - YUs)

< g, 80 the pair (a(s),S) 1is as desired.

Proof of Theorem 3. Equation (5) has a unique solution v(s) satisfying

boundary conditions (6) by Theorem 3 of Chapter II1  The remainder of
this proof will be in two parts; first it will be shown that v(s) < v(s,a)
for all a ¢ M .
For arbitrary a ¢ M denote v(s) = v{s,a) - v(s,a) and define
p(s) by
@) $(s) = W"(s) + d(s,a(s)) T(bls,a(s))v" (s) = 4v(s)] |
= v'(s,a) + d(s,a(s))-l[b(s,a(s))v'(s,a) - wi(s;a) + c(s,;a(s))]

- (9"(s) + d(s,a(s)) " b(s,a(s))v" (8) = iv(s) + cls,als))])

v'(s,a) + d(s.a(s))'l[b(s.a(s))\r'(s.a) - Av(s,a) + c(s,a(s))]

[1/\

- {¥"(s) + min {d(s,a)-l[b(s.a)v‘(s) - wv(s) + ¢(s,a)l't = O
ach
s

The last equality follows from equations (1) and (5), note by the first
equality that (s) 1s piecewise contlnuous. Subtracting (6) from (2).

it can be seen that v(s) alsc satisfiles

-15-
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(8) (ej + Kj)v(rj) ej g[;(S)th(S) (-1) T4V (rj)
+ oJ().v(rj) - (c(rj.a(rj)) - yj)) = 0, j = 0,1 .

Conclude from (7) and (8) that ©¥(s8) is the expected discounted cost
corresponding to the controlled diffusion process with admissible control
a(s), continuous movement cost ¢&(s,a(s)) = -d(s,a(a))y(s) > 0,
instantaneous return cost equal to zero, absorption cost equal to zero,
and C(rj'a(rj)) = c(rj,a(xj)) - Yj >0, j = 0,1 . Since all costs are
non-negative it is apparent that ¥(s) = v(s,3) - ¢¥(s) > 0 for all

s e S .

The final part of this proof is to show ¢(s) = inf v(s,a) by
aeM

demonstrating the existence of a sequence {an(-)} of admissible controls
with the property that v(s,an) +~ ¢(s) as n -« for all s ¢ S . By
Lemma &4 there exists a Borel measurable function £(-) from S 1into

K such that f(s) ¢ Aa and

d(s,£(s)) " (b(s,£(s))0' (s) - sv(s) + c(s,f(s))]

= min d(s,a)_l(b(s,a)v'(s) - 19(8) + c(s,a)])

8eA
]
for each s € S - By Lemma 5 there exists a sequence of admissible
controls that converges in measure to f(s) . ©Now some subsequence must

converge almost everywhere to f(s), 8o there exists a sequence {an(-)?

of admissible controls that converges a. e. to f( ) . Also, we can

-16-
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assume an(rj) £ Arj is such that oj(c(rj,an(rj)) - Yj

ns=l,2,** and 3§ = 0,1 .

) = 0 for
Denote Vn(s) = v(s,an) - 0(s) and define wn(s) as in (7) by

¥ (8) = W(e) + d(s,a ()7 [bls,a_(s))9(s) = iv_(s)]

= ~(0"(s) + d(s,8_(s)) " [b(s,a (s))9"(s) = Mv(s) + c(sya (s)]

Note that the piecewise continuous function -wn(s) converges almost

everywhere to

0" (s) + d(s,£(8)) L {b(s,£(8))¥' (8) = Av(s) + c(s.£(s))]

= 9"(s) + min {d(s,a) L[b(s,a)v'(s) - iv(s) + c(s.,a)]} = O
acA
S

As in (8) we see that vn(s) must satisfy

. 3 L
(ej + <j)vn(rj) - ej g[vn(s)duj(S) - (~1) ﬂjv (rj)

+ c, Av(r,) = 0

j 1 5 J = 0,1

Thus On(s) is the expected discocunted cost of a controlled diffusion

process with control a, ¢ M, zero jump, stopplng and adhesion costs,

*
and continuous movement cost -d(s,an(s));n(S) Since the oniy cost

*Note that the continuous movement cost here 1s no longer the
composition of a continuous function on S » K with a piecewise contin-
uous control., However, in view of Mandl (16, pp 148-49}, this presents
no problem since -d(s,an(s))wn(s) is piecewise continuous on §

-]17-
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of the process converges a. e. to zero, we must have On(s) - v(s,an) -

¥(8) 0 as n -+ =, and Theorem 3 is proved.

Theorem 6. Let ¥¢(s) be the minimal expected discounted cost for a

controlled diffusion process. A control a ¢ M s optimal if and only
if
(9) d(s,a(s)) " (b(s,a(a))0" (s) - AV(s) + c(s,a(s))]

= min {d(a,a)-l[b(s,a)O‘(s) - Ar(8) + c(s,a)))
aeAS b

for every s € S which is a continuity point of a(') and

(10) oj(c(rj,a(r Y)Y = v,) =0 for j = 0,1

3 3

Proof. Suppose (9) and (10) hold. By (5) we have

V' (s) + d(S.a(s))-l[b(S,a(S))O'(s) - M0(s} + c(s,als))] = 0

and by (6) we have

3 % )0 - 3 [ v ))du - -_‘j'! !
(vj + j) (rj) ] ; (v(8) + j(s))d j(s) -1) jO (tj)

+ cj(lv(rj) - c(rj,a(rj))) - Kj\j - OV‘

Hence v(s) satisfies (1) and (2) so ¥(s) = V(s,a) and a(s) 1s an

optimal control.

-18-
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Conversely, suppose a € M 1s an optimal control but that (9)

does not hold, that is, for some s ¢ S which is a continuity point of

a(s) we have

4(3,a(8)) " [b(5,8(3))0' (3) - 20 (3) + c(s,a(3))]

> min (d(3,a) t[b(5,8)9' (3) - 20 (3) + c(5.a)]}
acA- '

Defining w(§) as in (7) we note fhat v(s) < 0 Vin some neighborhood
of 8 . Using the arguments following (7) and (8), we conclude
v(s,a) > 9(s), which is a contradiction.

- Finally, suppose a ¢ M 1is an optimal contrcl and (9) holds,

i

but (10) does not. Using tﬁe arguments following (7) and (8) again we

‘have 'that v(s,a) = 0(s) 1is the expected discounted cost of a process

with zero continuous movement, instantaneous return and absorption
costs but with positive adhesion costs. Thus v(rj;a) > V(:j) tor

J =0 and/or j =1, a contradictibn, and Theorem 6 is prcved

The minimal expected discounted cost and an optimal control may

in principle be calculated for a process as follows. Define the tunction

f(s,y,2) from S ~ EZ into K such that f(s,y.2) ¢ Ay

¢, (c(r;,f(x

J 3 ]

d(S,f(S.Y-Z))-l(b(S.f(S.Y.Z))z - My + c(s,t(s.v;2z))]

-19-
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- min {d(s,a) Y (b(s,a)z = \y + c(s,a)])
aeAs

for all appropriate s ¢ S and y, z € E . Then the minimal expectad

discounted cost ¢(s) will be the uniqua golution on S to

d(s,f(s,v(s),0'(s))0"(s) + b(s,f(s,0(8),""'(8)))0'(8)

- 20(8) + c(8,f(s,0(8),0'(8))) = O

satisfying (6) . The function £(s,v(s),v'(s)) on § will then be
an optimal control provided it is admissible, that is, piecewise contin-

uousg.

The following example demonstrates that the optimal control is a

function of the discount factor A

Example.
0 « ry < Ty s
A, = lac Elks > |al}, k>0,
d(s,a) = d=>» 0,

b(s,a) = ba/s, b >0

c(s,a)

]
(e
v
[

, boundary conaition: v'(ro) = 0 (reflection),

Ty boundary condition: v(rl) - Al (absorption with cost il)

«20~-

il




Upon substitution into (5) one observes that the optimal action assumes
either the maximum or minimum value as the derivative of the minimal
expected discounted cost is respectively;negative or poaitiﬁe. 1f
0(:0) = ¢/X, then the unique solution of (5) is ¢(8) = c/Ar . If
0(ry) > ¢/A and a(s) = ks, then ¢'(s) > 0 so a(s) = -ks 1is
optimal and v(rl) 3_v(r0) > ¢/h . Similarly. v(ro) < ¢/ implies
a(s) = ks is optimal and v(r;) < v(ry) . Since v(r;) = A, deter-
mines v(ro) uniquely, we conclude that the optimal control is given

by

~ks , if A 2ceh

a(s) =

ks , 1f A < c/x .

3. The Undiscounted Cost Case.

Mandl [16, pp. 158-173] provides results for the undiscounted
cost case () = 0) when the controls are real-valued functions and the
sets of admissible actions are independent of the state space, that is.
for some compact K C E, As = K for all s € S . The purpose of this
section is to generalize his results in accordance with the formulation
of section 1.

For the undiscounted cost case there are two situations: either
the process is conservative or non-conservative. For the purposes of
this section, the boundary conditions are sald to be non~conservative

if at least one boundary is absorbing and neither boundary is purely

-21-
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adhesive, that is

Kg t %y > 0o, <, + nj + OJ > 0

L §=0,1.

Let v(s,a) denote the expected cost of such a process corresponding
to the centrol a €M . Then v(s,a) will be the unique solution of

(1) and (2) with A = U . The minimal expected cost €(s) 1is defined

to be

¥(s) = 1inf v(s,a)
aeM
An admissible control a e M 1s saild to be optimal if ¢(s) = v(s,a)
for 211 s € S . The wmain result for non-congservative processes and

undiscounted costs is the following.,

Theorem 7. Suppose the boundary cenditions are non-conservative. Then

the minimal expected cost ¥(s) 1s the unique solution of

(1) ¢'"'(s) + rin id(',a)-l[b(s,a)v'(s) +c(s,a)]: = 0
acA
s
satisfying
If .
" - v v oo - C (s))d NIRRT PRI
(12) (-j + j)o(rj) 5 J (v(s) + j(b))u j(h) (-1) J\ ..j)




| 4
7

where

'y

= nin ¢
acA
T

A control a e M

(13)

(rj ,a)

;J"O»l'

is optimal if and only it

d(s,a(s))  [b(s,als))v' (s) + c(s.ais))]

= min (d(s,a)-l[b(s,a)v'(s) + ¢c(s,a)]?
aeAS

for every s ¢ S which is a continuity point cf a( ) and

(14)

Proof

¢

3

Theorem 14, Chapter IIL.

(c(r

sa(r

3 ]

There exists a unique solution

1) =y

3

v(s) to

) = 0,

j=0.1

(11), (12) by virtue of

The remainder of the prcof proceeds as with

Thecrems 3 and 6, so it will be omitted-

sald to be conservative 1f

For the purposes of this section, the boundary conditicns are

one boundary 1s n.t purely adhesive,

Let

S(a)

denote the mean

that 1is,

pcnding to the admissible control 4

M

tost per unit time ct

Then

number to which there exists a solution tas (3).

Z0st

1s detined

to be

such
2ay

(4)

neither boundarv 1s absorbing and at least

a process corres-
is the unique

The minimal mean

PU———

s & i

1
.
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0 = 1inf ©v(a)
aeM

An admissible control a ¢ M 1 said to be an optimal control if

0(a) = 8 . The main result for conservative processes and undiscounted

costs is the following.

Theorem 8, Suppose the boundary conditions are conservative., The

minimal mean cost is the unique number O such that the equation

(15) w'(s) + min {d(s,a)-l[b(s,a)w(s) - C + c(s,a)}} = O v

has a solution w(*) satisfying
8
(16) 8j~[- J[ w(y)dy + vJ(a) duj(s) + (-1)jnjw(rj)
S rj

+GJ(YJ-€) =0 , J =0,1,

where Yj = min ¢(r,,a), J = 0,1,
achA 3
T3
A control a e M 1is optimal if and only if

(17) d(s,a(s)) " [b(s,a(s))w(s) - { + c(s,a(s)))

= min {d(s,a)-l[b(s,a)w(s) - O+ c(s,a)]}
acA
s

for every s € S which is a continuity point of a(:) and
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(18) (c(c ,a(rj)) - yj) = 0, j =0,1

730y

25225. Equation (15) has a solution satisfying (l6) for a unique number
e} by Theorem 16 of Chapter III. If <(a) = 7~ then a contradiction
can be obtained as was done with Theorem 3 of Chapter III to show the
unicity of v(xo) . Using the reasoning of Theorem 3, there exists a
sequence {an(s)} of admissible controls such that G(an) - 5 as

n-x=. so 0= inf C(a)
aM

To prove the necessary and sufficient condition for a contrcl to

be optimal, 1f (17) and (18) are true. the w(s) and ¢ satisfy (3).
(4) so ¢ = 0(a) and a(s) 4is optimal. Conversely, if a{(s) 1is
optimal but (17) is violated at a continuity point of a(s)., chen
employing the reasoning of Theorem 3 of Chapter I1I used to show the
unicity of v(ro). we construct a process with negative continucus
movement costs, non-positive adhesion costs. and zero instantaneous
recurn costs but with a zero mean cost per unit time, a ccntradicticn
Finally, 1f & = &(a) and (17) holds but (15) is violated. then a

sifmllar concradiction is obtained. and Theorem 8 is proved

4. Existence ot Admissible Optime! Conr-cis

There is no guarantee that an admissible cprimal control wiis
exlst for a contro.led diffusion process A pilecewise continuouvs cptlmal

control need not exist. as the following example shows: S = As s [-1 i)

«25-
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d(s,a) and b(s,a) constants, and c¢(s,a) = ga sin(%) . ’fﬁnditions

rg

which guarantee the existence of admissible cptimal conttols are pro-
vided in this section.

It is apparent that the problem of conE;alling a diffusion process
has several similarities to the problem of c6;trolling a classical deter~
ministic system. If the expected discgshced cost v(g) of a diffusion
process 1is interpreted as the statefég a function of time of a deter-
ministic system, then differentgil equation (1) describes the behavior
of this system over the time f;terval [rO,rl] subject to the (non-
classical) boundary condi;fﬁn (2). Furthermore, the problem of optimally

controlling this deterriinistic system so as to minimize the functional

is equivaient to the problem of optimally controlling the diffusion
process. Thue the question of whether piecewise continuous optimal
controls exist for deterministic systems is germane to the subject of
this section:

The mathematical system theory literature pertaining to the
existence of optimal controls can ¢.uerally be classified intc one of two
categories  Most research (e g , Cesari (4]) has been concerned with
proving the existence of a measurable optimal control. These papers
do not concern us because measurable controls need not be admis. “le
from our standpoint On the other hand, a few papers (e.g., Halkin [11]

prove the exlatence of piecewise continuocus optimal controls, but always

-26-
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for the special case where the state equation is linear in the state

and control together. The following results will serve to weaken this
linearity restriction, although it should be borne in mind that the
classical results are for N-dimensional systems, The existence theorems
in this section will all be for the discounted cost case; analogous

results hold for the undiscounted cost case.

We say the function f(s) : S ~ E 18 analytic at s 1if it has

o

an absoclutely convergent power series expansion f(s) = E ajsj in

- j=0
some neighborhocd of s . The function £(s) 41s analytic on the
interval S1 C S 41f there exists an open interval 52 ) Sl and a

function g(s) which is analytic at each s ¢ S, such that f£(s) = g(s)
for each s ¢ Sl . The function f£(s) 1is piecewise analytic on S 1{if
S can be decomposed into a finite number of intervals on each of which

f(s) 4is analytic. The following theorem is the main result of this

section,

Theorem 9  If A, = (1.2, *,N} and 1f d{(-;a), b(,a) and c( ,a)
are plecewise analytic on S for each fixed a = 1,2.: :,N, cthen there

exists a piecewise constant optimal control.

Proof . The function d(s,a) is positive for all s ¢ § and all

a=l, N so a(s,a) = d(s,a)"t, B&(s,a) = b(s,a)d(s,a) >, and
y(s,a) = c(s,a)d(s,a)-l are plecewise analytic in 8 on S for each
fixed a = 1,** ,N ., Let v(s) be the minimal expected discounted cost

for this process. Let a(s) be a function on S which satisfies

a(s) ¢ (1,°-,N} and

27
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v'(s) = =B(s,a(s))v'(s) + ra(s,a(s))v(s) - y(s,a(s))

for each 8 ¢ S . Thus a(s) will be an admissible optimal control if
it can be chosen piecewisa constant. To prove this choice is possible,
1t suffices to show for each s ¢ S the existence of some & > 0 such
that a(s) can be chosen constant on (8 - 8,8) NS and on (8,8 + &)
NS . We discuss only the second case, leaving the other to the reader.
For { = 1,~-+,N and arbitrary s ¢ [ro,rl), let vi(s) be the

unique solution on S to

v;(S) - -B(S.i)v;(S) + da(s,1)v, (s) + v(s,1}

and
vy =v(E),  viG) = v'(8)

From differential equation theory, vi(s) is plecewise ana. tic :¢0d
therefore analytic on (E,E + 34) for some & > 0 . Hence for some

§ > 0 there exists some integer j in {1, - ,N, such that

vj(s) 2 vy(s) for all 1 =1, ,N and all sc¢ (s,s + &) . We shall

now show that the action a(s) = 3 1is optimal for all small enough

s > 8 .

For this j and each 1 =1, * /N define

wi(s) = [B(s,1) - B(s,3)Ivi(s) - r[a(s,1) - a(8,])] vj(s) + [y(s,1) - v(s,3)].

b

-28~
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and note that wi(s) is analytic on (E,E + &) for small enough

§ >0 . If we denote 01(5) - vj(s) - vi(s), then vi(s) will be the

uniqua solution on S rto

Vi(s) = =B(s,1)0,(s) + ra(s,1)?,(8) + v, (3)

satisfying 01(5) s Vi(é) = 0, For some & ~ 0, wi(s) is either

uniformly positive, uniformly negative, or vanishes identically on

(E,E + ¢) By differential equation theory and the choice of ;. we

conclude for some 8§ > 0 and each { = 1, - ,N that wi(s) > ¢ for

all s ¢ (s,8 + ¢)

e s st A it

It follows that for all small enough s > s we have

vi(s) = - min (B(s,1)v;(s) ~ aa(s,1)v_(s) + v(s5,1)] ,
. feil, s, N : )

vj(g) = v(s) , and v'(s) = v'(3)

Because of the uniqueness of solutions to this equation. this implies

v(s) = vj(s) for all small encugh s > s Hence we can chocse af(s) = 3

as the optimal action for each small encugh s - s .

Corollary 10  Let AL = ifl(s).- "fV(S)} and suppose for 1 =1 N

that il(s) is a bounded, ptecewlse continuous. vector-valued function

cn S and the functions d(s;fj(s)): b(s,fi(s)); and c(s,fi(s)) are

plecewise analytic cn S Then a plecewise continuous, admissible

optimal control exists-
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Proof. If we set c(s,1) = c(s,fi(s)), etc., so that A = {1,=+ N} .
then the proof is immediate.
.

An admissible optimal control will therefore exist if, among
other things, the map As is finite valued and pilecewise continuous. e
Note that the number of available actions may vary from state to state.
The hypothases of Corollary 10 are satisfied by a variety of functions.
For example. if d(s,a) 1s an analycic function of the two variables
s and a, and fi(s) 1s analytic in s, then d(s,fi(s)) is
analytic baecause the composition of analytic functions is analytic. On
the other hand, suppose d(s,a) 1s an analytic function of 8 for each
fixed a, but it is not analytic in the two variables s and a
togethar. If fi(s) is a piecewise constant function, then d(e,fi(s))
is piecewise analytic.

The following theorem exploits the fact that if the optimal action
1s unique for all but a finite number of s ¢ §

, then a pilecewise con-

cinuous optimal control must exist

Tr2orem 11 Let v(s) be the minimal expected discounted cost, suppose
As is a convex set for all but a finite numher of s ¢ S8, and suppose
d(s>a)~l[b(s,a)V'(s) - iv(s) + c(s,a)] 1s a strictly convex function

of a for ail but a finite number of s ¢ § Then an admissibie

optimal control exists

Prcof Let the unique (apart from a finite number of points) control

a( ) + S > K be such that a(s) ¢ As and
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d(s.a(s))"l[b(s.a(s))v'(s) - Av(8) + c(8,a(s))]

= min {d(s,a)-l[b(s,a)v'(s) - hv(s) + o(s,a)]l
aci
8
for all s € S . 1In view of the uniqueness, a(-) dis plecewise con-

tinuous. completing the proof

The proof of Corollary 12 is an immediate consequence of Theorem

11 and is therefore omitted.

Corollary 12. If As ls a convex set for all but a finite number of
s € S, c(s.a)d(s,a)”l is strictly convex in a for all but a finite
number of s §, and d(s.a)-l and b(s,a)d(s_a)'l are affine with

respect to a, then an admissible optimal control exists.

The following theorem combines elements of the previous twe

Theorem 13. Let A_ = [a;(s).a,(s)]. a compact interval in E for
each 8 ¢ S, where al(s) < az(s) are bounded. piecewise continuous
functions Suppcse d(s,al(s)), b(s,ai(s)), and ;(s,ai(s)) are
piecewlse analytic on S for 1 = 1.2 Let § bLe deccmpesed 1nto a
finite number of intervals It S is any such interval then suppcse
) . -1 . -1
that one of the three tunctions d(s,a) bis,a)d(s.a) =, or
-1 ) .

c(s a)d(s.a) 15 either strictly convex or strictiy concave in  a.

5
and the other two rfunctions are atfine iun a. ror a1 s ¢ Si Then

an admissibla optimal countrol exists.
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Proof Define af(s.a) = d(s.a)-l, 8(s,a) = b(a;a)d(s.a)-l. and

y(s8,a) = c(a,a)d(a,a)-l . We can assume without loss of ganerality that
al(s) and az(s) are continuous on §; that o(s,ai(a)), 8(s,a (s));
and y(s.ai(a)) are analytic on S for 1 = 1,2; an@ that the decom-
position is the trivial one, S = s There will then be three cases,
corresponding to which of the three functions a(s,a); B(s,a) or

vy(s,a) 1is strictly concave or strictly convex Throughout, we use. the

fact that v"(8) 1is continuous on S (Lemma 5, Chapter III).

Cage (i): v(s,a) strictly concave or strictly convex in a .

If Y(s,a) 1is strictly concave in a, then so is B(s,a)v'(s) -
aa(s,a)v(s) + v(s,a) This function is minimized by either the action |
a= al(s) or a = az(s), so this case reduces to the finite acction 2
situation and Corollary 10 applies The situation where y(s,a) {is : .

gtrictly convex 1is covered by Corollary 12

Cage (11): «ao(s.a) strictly concave or strictly convex in a
By reasoning similar to the above, an admissible control is
optimal provided v(s8) changes from zero to a non-zero value only:a

finite number of times as s increases from r

o to - Suppose not; T

1

so that in any neighborhcod ot s ¢« S, say, the function v(s) changes

sign infinitely ofren as s + s By continuity, it is necessary that
v(3) = v (8) = min y(s.a) = O Since y(s,a) is affine in a,
acA.
s
min y(s.a) = min . (s a (s)) By analyticity. min ¢(s,a) 1s either
azd i=1,2 ’ acAg

zero, positive or negative for all small enough s °> s, we examine
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these three situationsg In the firsc situation we must have for all

! Such: 8 > 8 cthat v(s) = 0, a contradiction. Secondly. 1f

min v(s;a) > U for all small enough s - s, thera will exist a

acéh )
- 8 ) ;
- i
° sequence 8, + s such that v(sj) <0, v'(sj) « 0. and v"(sj) .0 i
S
: . But for any large enough j and some aj € A5 , We have
. j ,
v'(s,) = -B(s,,a,)v'(s,) + ra(s,.a.)v(s - v(8,,a
L ©y 3290V 5y §2857V0sy) T viegay)
< =vy(s,:a,) < - min y(s,,a8) < O
: . ; jj' aeAs J
" h!
by assumption, a contradiction. As the third and final situation.
L ) .
suppose min y(s,a) < 0 for all small enough s - s There exists a
acl
. 8
@ - ‘
sequence 8, v 8 such that v(st > 0, v’(sj) = 0. and v“(sj) 0
] : - There also exists a corresponding sequence aj € AS such that fcr all
, 3
7 large enough j, '(Sj'aj) <0 3y the optimality condition foi any
[ .
i ] s,
]
i
i«
4
-v''(s ~ =aa(s,;a)v(s,) + y(s8..a ) s oa )
'y SARS M AR B
o ) - ’ )
] Thus for all large enough ]l we have v"(ﬁj) > 0, a contradicticn
L
Case (ii1). &£(s,a) stiittly concave or sirictly convex in a
l _ ' : By reasagning similar to the.aboye, an admissible control is
' cptamal 1f v'(s) changes from zero to a non-zerc value onlv a rinice
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number of times as 8 1increases from ¥y to ry . Suppose not, so
that in any neighborhood of s & S, say, tha function v'(s) changes
sign infinitely often as s + s . By continuity, we must have

v'(s) = v'(s) = 0 Define y(s) = v(s) - v(8) so0 that y(s) = y'(s) = 0

and
y"(s) = -min {B(s,a)y'(s) -Xa(s,a)y(s) + v(s,a) ,
acA
8
whera ;(s.a) = y(s,a) - Aa(s,a)v(s) . Note that y(s,a) satisfiles
the same hypothases as y(s,a) . In particular, min Y(s,a) =

ach
8

min ?(s.fi(s)) and this function is either positive, zero, or negative
-
éoi‘ill small enough s > 8 . We now examine a hierarchy of situations.
If min ?(s,fi(sn > 0 for all small enough s > s, then by
differentiai :aaation theory we have that y(s) > 0 and y'(s) > 0

for all such 8 . Thus there exists some sy 8 1in this neighborhood

with y'(ao) = (§ and y(so) > 0 . Then by Lemma 10 of Chapter III we

have y'(s) > 0 for all s > s in the specified neighborhood of s,

a contradiction. If ;(s,fl(a)) and ?(s,fz(s)) are both non-positive

for all small enough s > Sy then a similar contradiction is obtained.
As the final situation we need to consider, suppose V(B,fl(s)) >0

but ;(s,fz(s)) < 0 for all small enough s ° s (the proof for

;(s.fl(s)) < 0 < y(s,f,(s)) 1is similar and left to the reader). Define

wis) = Y(s,f (S))/[XG(S.fz(S))] Now w(s) < 0O for all smail enough

s >8, and v"(s) = 0 implies w(s) = 0 . Since w(2) is analytic, e

must have w'(s) < O for all small enough s > s First we'll show

that y(s) < 0 for all small enough s > s If s > 8 1s such that
3=

o
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y(s) >0 and y'(s) = 0 then

y"(8) > ha(s,f,(s))y(s) - Y(s,£,(s))

> Xa(s,£,(s))u(s) - Y(s,f,(8)) = O.

The continuity of y"(s) and y(s) >0 imply y'(s) > 0 for all small

enough s > 3, a contradiction.

We now assume y(s) < 0 for all small enough s > 8 and show
'y'(s) = 0 implies y"(s) has the same sign as y(s) - w(s) . This
fact is immediate 1if fz(s) is an optimal action at this s . Alter-

natively, if fl(s) but not fz(s) is optimal, then

—Aa(s,fz(s))w(s) + ?(s,fz(s)) = 0
< =xa(s,f,(s))y(s) + Y(s,f,(8)) = =-y"(s)

< -Aa(s,fz(s))y(s) + 7(s,f2(8)) ’

so y"(s) <0 and y(s8) < w(s) .

We now make the concluding arguments by considering the three
situations corresponding to the sign of y'(s) for all small enough
s > 8 . First, we have y(s) < d, so y'(s) > 0 for all small enough
s > 8 leads to a contradiction. Secondly, if y'(s) ~ 0 tor all small
encugh s > s, then y'(s) = 0 implies f2(8) is the unique optimal
action, because otherwise fl(s) is optimal, y'"(s) <« 0, and, by the
continuity of y'"(s), a contradiction is obtained. Hence y'(s) < 0

for all small enough s > 8 iuplies some admissible control is optimal.
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This 18 because if B8(s,a) 18 convex with respect to a then

B(s,a)y'(s) - \a(s,a)y'(s) + ;(s,a) is concave and by earlier reason- . i
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ing, the optimal control is pilecewise continuous in this neighborhood-
On the other hand, if B8(s,a) 1s strictly concave with respect to a
then the optimal action is unique for each small enough s > 8, in
which case the optimal control is countinuous in this neighborhood.

As the final situation, suppose y'(s) assumes both positive
and negative values in every neighborhood of & . By the preliminaries
above, there exists a sequence {sj} v+ 8 such that y'(sj) =0; J
even implies y"(sj) >0, Y(Sj)‘i w(sj). and y'(s) > 0 for
8 £ [s8 ), and

]J; and 3 odd implies y"(sj) <0, y(s,) < w(s

3*%3-1
y'(8) <0 for s ¢ [sj,s

] 3

j-ll . Thus if j 1is even we have w(s)

crossing y(s) from below as 8 1increases from s to Since

j 1-1

y'(8) > 0 for all such s we must have w'(s) > 0 for some such s,

which is a contradiction for large enough even j . Hence in every
situation either some admissible control is optimal or a contradiction

can be obtained, and Theorem 13 1is proved.

Corollary 14. Let the hypotheses of Theorem 13 be satisfied except

1

that, if S 4s an interval with d(s,s) = and b(s.a)d(s.a)"1 affine,

then c(s,a)d(s,a)-l is either affinz, concave, or strictly convex in

a for all s ¢ S0 Then an admissible optimal control exists.

Proof The proof of Case (1) in the proof of Theorem 13 goes thrcugh

without change.
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Corollary 15. Let the hypotheses of Theorem 13 be satisfied except that

if S 1is an interval in the decomposition of S then one of the three
functions d(s,a)-l, b(s,a)d(s,a)”l, '.:(ss,a)c.l(s,a)_l is analyti: in
(s.a) jointly on S x K and either concave or convex but not affine
in a for all s ¢ SO

for all s ¢ 50 Then an admissible optimal control exists.

, and the other two functions are affine in a

Proof. In view of the proof of Theorem 13, it suffices to show that
if f(s,a) 4is some function which is analytic in (s,a) jointly on

S x K and concave but not affine in a for all s ¢ §O, then £(s,a)

is striccly concave in a for all but a finite number of s ¢ S (the

precof for f(s,a) convex 1s similar and ieft to the reader) Since

f(s,a) 3s not affine in a, there exists some s ¢ §O such that
f(s,a) 1s not affine. The analytic function iiif(g,a) is thus nega-
tive for all but a finite number of a « K inciiding, say, a e A;

It follows that the analytic function §3§f<s,a) is negative for all
but a finite number of s ¢ S, 1in whicaacase we must have 33~f(5;a)
non-zero and f(s,a) strictly concave in a for all but a E?nite

number of s ¢ §

5. Applicaticn: Contrel cf a Dam

Suppose that the water level of a reservoir behaves like a sta-
tionary Markov process and fluctuates indefinitely in a continuous

fashion between the numbers ro

the botton of the reservoir and the top of the dam. Furthermore,

STy which correspond respectively to

-37-
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suppose that the water level can be controlled to a certain extent
by digcharging water from the reservoir and that there exists a cost
or utility rate associated with alternative discharge rates. Finally,
suppose that therz exists a second cost associated with the water level
being at a particular value for one unit of time. Then the problem of
optimally controlling chis reservolr system may perhaps be stated as
the problem of optimally controlling a conservative diffusion process.
It will be assumed that the water level of the reservoir behaves
like a controlled diffusion process with reflection, or possibly reflec-
tion combined with adhesicn, at each of the boundaries ry and r, -
The control action corresponds to the rate of water discharge through
the dam and the control will be a plecewise continuous function of the
water level, 1In addition, it is assumed that the costs of the reservoir
system can be represented by a continuous movement cost, that is, the
sum of the control and water level cost rates will be a continuous
function of the discharge rate and the water ievel. Thus the diffusion
process will be conservative, and in the case of undiscounted costs the
optimal control will be that admissible control which yields the minimum
expected cost per unit time. In the discounted cost case the optimal
control will yield the minimum expected discountec cest, which will be
a function of the initial water level.
This model 1s cssentially a generalization of one by Bather [1].
His model assumes the reservoir input rate behaves like ordinary
Brownian motion with positive drift, that a cost rate 1s associated with
alternative discharge rates but not with alternative water levels, and

that all controls must be ccncinuous functions of the water level., In
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addition, if his water level process bhecomes negative then he assumes

the water level is actually zero, so chat pure reflection is impossible.

Finally, his only optimality critevion is that of maximizina the
P )

expected utility per unit time,

Example. This example of controlling a reserveir uses the discounted
cost criterion for evaluating optimalirty The state space S and the
get-valued function AS of admissible actions equal the unit interval
The diffusion coefficient equals tihe positive constant A; and the
drift coefficient equals B(l - 2a), where B 1is a positive constant-:
The continuous movement cost is a convex quadratic function of the
2 .
water level, namely ps - ps + q, where p > 0 and q are arbitrary
numbers. The boundary conditions, at s = 0 and s = 1. are pure
reflection. The intuitively obvious control is to try to maintain the
1 . . ;
water level at s = 3 that is, maintain a minimum discharge rate
. . 1 . )
(a = 0) when the water level 1s less than 5 and maintain a maximum
discharge rate (a = 1) otherwise. If this conjecture is correct
then by symmetry the derivative cf the minimal expected discouvnied

h) 1 1
cost will equal zero at s = 5] with

[NAT

Solving eguation (1} on [0

a(s) = v'(0) = v'(%) 0, we obtairn the solution

v(s)

]
—
17
+
~
o
+

-
—_
=]
N
{
3
n
+
D
St

o

+ Z%R + -%(Zps - p) + ibru s = Lo LJ

N : LR A
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where L, = il : -§e2+3Plj.e2-1 , “ |
( o _2_) 22 J
2 -
21 e 2 e ~
- H
4 ty e
—_ .- i
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i Similarly. solving (1) on [-2-,1] with a(s) =1 and v (-2-) = v (l) =0
we obtain .
~%,5 -%,5 " !
v(s) = n’le 1 + Nze 2 + %—(ps" - ps +q) .
2Ap B ZBZQ 1 -
+ =5 - —§(2ps - p) + “=3- s ¢ [i'l] ' ~
A A A
4 K ] )
where N = ----27—-__ - P+ EP_B_ e 2 -1
1 £ i ) 2
( I .
“1le 2. e 2 R
i,) ‘
i ( -i;)
A
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After verifying that v(s) 1is continuous at s -'if e conclude that

2
v(s) 1s the expected discounted cost corresponding to the admissible
control a(s) = Q0 for O 8 < % and a(s) = 1 ftor % <s < 1. 1t

remains to show that a(s) 1is optimal. Since it can he shown that
v(s) = v(l - 8) for all s ¢ [0,%], by (9) it suffices to show that
vi(g) <0 for all s ¢ [0:%] . Since the continuous movement ceost

p32 ~ps+q<q for all s ¢ (0,1), we must have wv(s) -

o

fe'“qdc for all s ¢ S . Ia particular, Av(0) < q . Similariy,
0

AV(%) > q - %p . It follows that v"(0) < 0 « v”(%) . We know that

oo 0, £, <0, and L, ¢ 0. If L, >0, then v'(s) would be

2
concave, a contradiction, Thus, with L2 < 0, there exists some
s ¢ [O,%) such that v'(s) 4s convex for 0 < s - s and is concave
for s < s :.% ~ It v'(s) >0 for any s ¢ [0;%], then a contra-

diction 18 obtained. so we must have a(s) optimal and wv(s) the

minimal expected discounted cost.

6  Application: Control ot Pollution.

Suppose that the index of pollution is counstrained tv tali
between zero and some positive number This wouia be the case, fot
example, when dealiny with an air basin or a body of warer Assume
that a factory, a coliection of automobiles, or a similar polluting
mechanlsm wants to contrnl this index of polluticn by optimially

choosing the amount of its waste products thuat Is being emitted as a

-4l-
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pollutant as opposed to being processed in a pollution free manner.
Finally, assume that there exists a cost to the controller for each
level of control as well as to each value of the pollution index. Then
the class of controlled diffusion processes used as models of dam-
reservolr systems may perhaps be used as models of pollution systems.

The state of the process will correspond to the index of pollu-
tion, and the boundary behavior, at zero and the maximum index value,
will be reflection or possibly reflection combined with adhesion  An
admissible control will be a piecewilse ccntinuous function of the state
space that will represent the portion of the controller's wastes that
is being emitted as a pollutant. Presumably, (i) the bigger the control
value the smaller the control cost rate (less needs to be processed),
(11) the bigger the c<ontrol value the bigger the drift coefficient; and
(i11) the bigger the pollution index the greater the pollutant cost
rate. An optimal control will be an admissible control which yields
either the minimal expected discounted cost or the minimal mean cost
per unit time

The chcice of the proper upper boundary condition is open to
question. One possibility other than reflection is absorption, with
the interpretation that in the rare event the pollution ever reaches a
sufficiently high. intolerable level, then a 'disaster" would cccur at
some high cost If it can be assumed that the pollution index rarely,
if ever, attains its upper limit then the choice of the upper boundary
condition becomes moot This might be the case 1f the pollution index
is thought of as the percent of the natural medium which has been

replaced by poilutants. The oxygen in an alr basin would never be
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completely replaced by smog, for example, so the drift and diffusion
coefficients of the corresponding diffusion process model would be
chosan accordingly. Then the process would rarely be affected by the

upper boundary, so its effects could largely be ignored.

Example. This example of controlling pollution uses the discounted cost
criterion for evaluating optimality. The state space S and the set-
valued function As of admissible actions equal the unit interval. The
diffusion coefficient, drift coefficient, and continuous movement cost
equal respectively A, B(2a - 1), and Cs + D(1 - a), where A, B. C,
and D are arbitrary positive constants. Assume the boundary conditions
are equivalent to pure reflection. In view of the boundary conditions,
the soiution of (5) for the minimal expected discounted cost v(s)

must be such that, in some neighborhoods of the boundaries, v'(s) < L/2B

and the optimal control a(s) equals one. If a(s) =1 for all s ¢ §

then
%.8 £,.8
1 2 Cs BC
v(s) Le + Lye + =+ ¥
*
2
where Ll a )9 % =€
K.2 2 k.l
e - e
£
L - C e ! -1
3o I3 ]
2 ALZ 22 Ll
e - g
o =alp Va2 4 st
x [
! 2
<43~
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-a"ls -*/k'zsz + 4a~h)
and £ - s

2

The derivative v'(s) 1is then a concave function that equals zero at i

§ =) and 8 » ) and assumes its maximum value at

2
- . 1 ln{ ~koly
L. - % 2 ‘ ..
1 2 \ 9L,
D .

1If v'(s) AT then v(s) equals the minimal expected discounted cost
and the optimal control is to process none of the wastes at any level of
pollution, that is, pollute as much as possible  Suppose, on the other

hand, that v'(s) > D/2B, that is, T

D
B

[ V]

If a(s) =1 for all s ¢ [90.51]. where 0 < 8y < 8y < 1 and

v’(so) - v'(sl) = D/2B, then the derivative v'(s) 1s concave on
[so,al]. in which case a(s) = 1 1s not optimal. Hence 1f v'(s) > 1
there exist two numbers 0 < 8, < 8 < 1 such that 1f g ¢ [0;301 U
(sl’l] then the optimal control is to pollute as much as possible, while

if s ¢ (so,sl) then the optimal control is to process all of the waste

products.
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7. Application: Control of a Queueing System,

Suppose a queueing system 1is characterized by having a finite
wailting room, that is, the length of the queue 15 less than or equal
to some number, In addition, assume that the length of the waiting line
can be controlled by the servers, such as by changing rhe service rate.
Then let the number of zustomaers in this queueing system be represented
by a controlled diffusion process fluctuating between zero and the
capacity of the queueing system. The behavior of the process at these
boundaries can be either reflection or reflection combined with adhesion.
The control action corresponds to the service mode, for example, the
service rate, If there are costs assoclated with alternative queue
lengths and control actions, then a control which yields the minimal
expected cost of the diffusion model will be an optimal control of the
queueing system. Presumably, the queuve length cost will be an increasing
function of the quaeue length, and controls with a greater tendency to
shorten the queue length will be more expensive.

An cbvious shortcoming of this model is the fact that the length
of a queue 1s a discrete state process whereas the diffusion process is
continuous In cases where this continuous state approximation is not
sufficiently accurate. however, it may be possible teo construct a
diffusion process so that a discrete process which can be extracted
trom it will have certain desired properties.This discrete process can
be defined as follows. For some positive integer N, let the diffusion

A\,

process be defined on [0,N]) and let the discrete process have N + 1
states corresponding respectively to the integers O0,1,°°°,N . Then the

discrete process will occupy state 1 1if 1 was the most recent i1nteger
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value attained by the continuous process sample path. The discrete
process will then enter state 1+ 1 (or 1 - 1) at the epoch whenrthé
continuous process first attains the value { + 1 (1 - 1)

There 1is no assurance that the diffusion process can be con-
structed so that the first passages times of the extracted discrete
process will have some specifi¢ probability distribution  In particu-
lar, exponentially distributed first passage times cannot génerelly b§
obtained. However, the following discussion will show that an arSitrary
set of mean ficst passage times can be rapresented by the discrete
process extracted from a Brownian motion with properly chqsen boundgry
conditions

Suppose that the queueing system has capacity N and that four
ictems of data are specified: cthe transition probability p from state
1 to 1+ 1 and the mean occupation time & in écate i, for 1 - 1,2,

- :N=1 ; the mean first passage time ¢t from state 0 to 1, and
the mean first passage time u from state N to N-- 1 We want tc
calzulate the diffusion coefficient d, the drifc coefficient b, andr
the boundary conditions r |

o' %00 "1t 9 (we lec 6_ =8 = x_ &« = Q)

0 1 0 1
so that the extracted discrete process will correspond to this queueing
system in the specified manner. | |
Utilizing the fact that the expected state of the process upon
exit from the interval (i - 1,1 + 1) given initial state 1 equals
the product of the drift coefficient and the first passage time §,
we conclude that b = (2p - 1);& . Ucilizing standard diffusion process

theory (see, for example. Mandl (16, pp. 100-1(G2]) to calculate the mean

first passage time in terms of the drift and diffusion coefficients. we

46~
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cdncluéa for b ¢ 0 chat the Qiffuaibn coarficient d must be the
unique solution to b -.coth(b/d) - csch(b/d) . Note that a unique
aoiution for- d alwayslexis:s‘because coth(x) - csch{x) increases
monotonically from -1 to 1l as x increases fron -+ to = . If

we a;sume that § < t, L 1, and b ¥ 0, " then by standard diffusion
ﬁrocess theorx agaln the mean first passage time from state O to state

-b/d 1

1l equals -%(00 - %)(l -e )y + % - Setting this equal to t allows

one to calculate the coetficient 00 deécribing adhesion at boundary
X, - Similarly, 14f b = 0 then d = 1/25 and Og = ¢ -6 . The cal-

cuiation-of 'y and N proceeds similarly.

Example. This example of controlling a queue uses the discounted cost
criterion for evaluating optimality. We héve § = [0O,N] and A, = {0,R]
The diffusion coefficient equals the positive constant A, the drift
coefficient equals -a, and the continuous movemenc cost equals

Cs + Da, where C and D are éositivg c&nscant31 Thus larger controi
véluea will tend to shorten the gueue length at the expense of a greater
control cost- The boundary-conditions are equivaient to pure reflection
The calculations for this example proceed similarly to thése for the

example in Section 6., In some neighborhoods of the boundaries the

optimal controcl a(s) must be zero. Ii a(s) « 0 1ror all s ¢ 5

' then the expected discountéd cost is

-4 7=
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where % = VA A . The derivative v'(s) attains its maximum value at

8 = N/2, 980 if v'(N/2) = ;%Q e_~-¢& _ +'% ~ D, then a(s) =0

is optimal and v(s) 1is the minimal expected discounted cost. On the
other hand, 1f v'(N/2) - D, then there exist 0 - 8y < 8y ° N sguch
that 1f @8 ¢ [0.90) U (sl,x] then a(s) = 0 1is cptimal, whereas if

8 € (so,sl) then a(s) = R is optimal.

8 Application: Making Optimal Investments

Suppose the owner of an investment fund has available to him a
number of alternative investment opportunicies, each of which is charac~-
terized by a rate of return and a value of risk that are constant with
respezt to time Moreover. suppose that the value of the investment
fund is characterized by being bounded by two numbers. For example;
the value might aiways be non-negative and if the fund's owner ever
acquires & million do.lars, then he would stop investing If the owmer
wants to make the optimal choice of investments for every level of the
fund's value. then his prcblem can perhaps be solved by the consideration
of an appropriate cont:iolled diffusion process

Let the value of the investment fund ccrrespond to the state of
the diffusion process and assume that the behavior cf the fund at the
boundaries can be represented by some choice cof diffusion process
boundary conditions For example, the fund value could behave like

rerie_tion at the lower boundary and absorptien at the upper one The
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map As describing admissible actions is formulated so that, for each
s £ S, there is a one~to-one correspondence between admissible actions
ac AS and the investment opportunities which are available when the
fund's value is s , Let the continuous movement cost reflect the
utility to the fund's owner of the fund being at a particular level for
one unit of time, and let the costs associated with the boundary condi-
tions be defined in a corresponding manner. Then the control which
ylelds the minimal expected cost for the contgolled diffusion process
will correspond to the optimal investment policy.

The value of risk associated with an investment is generally
specified by the variance per dollar invested. Thus it is convenient to
describe each investment opportunity by a pair (al,az) where a, > 0
is the variance per dollar invested and a, € E 1is the yield, that is,
rate of return. Then we can let As be a compact subset of E+ x E so
that each admissible action (al.az) € As corresponds to some investment
opportunity. Normally, the map As is a constant with respect to s ¢ S,
but not necessarily so. Certain investment opportunities, for example,
might be available only to funds of some minimum size.

In formulating this controlled diffusion process investment
model, it remains to specify the drift and diffusion coefficients. Given
a specific investment opportunity, the expected profit and standard
deviation per unit time for a fund will be proportional to the fund's
value. Consequently, if the fund is invested in opportunity (al,az) 3 Ak
then the appropriate coefficients for the diffusion process model are

d(s,a) = szal and b(s,a) = sa, .

=49
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Example. For this optima: investment example we assume the fund's

value is bounded as 0 - ry ¢ 8 < 1) <=, and we want to minimize the

probability of reaching 1, before ll This problem can be solved
by considering a non-conservative diffusion process with undiscounted
cecsts.
Suppose ea:zh boundary condition is pure absorption wich costs
*0 =1 and “y =0 Then with a zero continuous movement cost. the
minimal expe:ted cost v(s) 1is the minimum prcbabiiity of reaching S

4 before r

0 1 when starting at s = Clearly v'is) ¢ 0. so by (l4),

we want to chcose a ¢ As so that

b(s;a) b(s.a)
SYoYIT T max o ot-v
d(s,a) ach d(s,a)
8
In particular_ suppose A b(s a) and d(s,a) are as formulated ;)
above witch AB constant with respect to 8 ¢ S If a, - 0 for some 3
sa .
(al;az) 3 Aa. then max {-§g~ - 0 and this corresponds to a favorable o ‘
aeA;\s al

game Ncte that 1f several investments have the same positive yield
then the least risky one will maximize (sazlszal), so conservative
piay is optimal On the cther hand,; suppose & L 0 for all -

(.a‘L a,) ¢ As , this corresponds to an unfavorable game, e g ., a casino-

In this case, if seve:al investments have the gamc negative yield; then

the riskiest cne maximizes (saziszal) that is. bold play 1is optimal
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CHAPTER I1I

MULTI-PERSON CONTROLLLD DLITUSIONS

This chapter generclizes the concept of a cuntrolled one-
dimensicnal diffusion process by allowing the process to be controlled
by N persons If the process 1s controlled by two persons with
opposite objectives, then the problem of optimally controlling this
process may be viewed as a zero sum, two-~person game On the other
hand, if the process is controlled by N > 2 persons with possibly
different ohjectives, then the problem of optimally controlling this
process may be viewed as a non-zero sum, Neperson game,

The results in this chapter are intimately connected with those
for single person contiolled diffusions (see Chapter II and Mandl [16])
In addition; minimozx problems in the theory of diifusions have been
tveated by Garsanov [10]. The multi-perscn controlled diffusion
process is formulated in the following sectiinn the zero sum. two-
perscn game problem is discussed in the succeeding four sections. and
the non-zero sum, N-person game nroblein ds treated in the final five
secticns. Both diszoun’ted and undiscounted :vocte a.e considered fer
both game problems. and =xi1stence theorems are provided In addatien,
several possible applications of multi-pscson controlled diffusions
are given A majo: result ot this chapter is that the value of a zero

sum, two-person game 1S the unidue soluticn ovi 2 differential equation
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1. The Muiti-Person Controlled Diffusion Process

The multi-percon controlle” diffusion process is formulated as
in Chapter II, only taking into account the multiple number of
controllers. Consider a diffusion process with state space S, a

compact interval [ro:rll of the real line E, which 1s controlled by

N persons (integer N > 2 ). For each 1= 1.2, . ,N, some positive
oy th .
integer n. and some compact set Ki CE *, cthe 1 person’s
control is a vector-valued function on § with range Ki - Let A:
be a point-to-set map from S 4into K1 such that A: is pilecewise

continuous in s in the Hausdorff metric and for each s € § the set

A: 18 a non-empty compact subset of Ki Each time the process 1is

th
observed in state 8 the 1 oerson chooses an action a, from the

i )
set As . The set Mi of admissible controls for the 10 person con-

sists of all pilecewise continuous functions ai(s) on S with range in

Ki such that the acction ai(s) £ A: for €each s ¢ S

= PR = . x N - « - x =
Let M Ml Jz 1N K Kl Kn, a(s)
) . Y (e o oAt N .
(al(s); ;dN(u)); aad A8 \As, 'As)' so that M 1is the sert of

admissible contirols, a funcrion a(s) 1s an admissible control if ind
coly 1f a(s) « M, and a( ) ¢ M implies a(s) ¢ As {¢r each s ¢ S
Throughout this chaprer it shculd be clear from the context whether the
tecte: a denotes an admissible contrcl a = a( } ¢ M or an admissible
action a ¢ AS for some s = S . The map As is characterized in
Chapter II We assume M # : hercafter without further mention-

The definition of a multi-person contiolled difiusion process 1is

a slight generalizacion of Mandl’'s (16. p. 157] controlled diffusion

- .\J
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process. Let d(s.a) be a conctinuous, positive real-valued function

on S x K. Then for a(-) ¢ M the plecewigse continuous function
d(s,a(s)) 1is the diffusion coefficient of the process. JSimilarly,

let b(s,a) be a continuous real-valued function on § = K so that

I TR

.,.
4
¢

b(s,s(8)) 1is the drift coefficient of the diffusion process.
- Following Mandl, with a given control a(-) ¢ M the multi-person
controlled diffusion process 1s completely specified by the generalized
classical differential operator
d? d
D = d(s,a(s))—s + b(s,a(s))ag

ds2

R p———
.
.

T WP

together with Feller's [7,9) boundary conditicn

kv(r,) + ‘j(v(rj) - d[v(s)dLj(s)) - (-l)j’Ev'(rj)

S

-
—
1]

+ :’J(D\)(I’J) = 0, 3= 9,1

where v{s) 1s some function whose second derivative is plecewise con~

tinuous on S . At each boundary Ity the tour non-negative param-
ws eters <j' GJ. ?3 and ¢, at least one of which must be posttive
J

correspond respectively to the phenomena of absorption, adhesion reflec-
ticn and instantaneous return Corresponding t¢ ¢, 4is the probability

distributicn function "j(s) vhere d. fs) =1 This boundary

W

(rgr7))

b lloat” e

condition is interpreted more fully i Chaprer I1

The multi-person controlled diffusion process generates costs

- e ey

-53-
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according to its sample path and control (Mandl (16, p 148]). With the N
2ero sum, two-person game problem, exactly one stream of costs is gener-

ated, as is the case with the single pergon controlled diffusion o
{Chapter II). But with the non-zero sum, N-person game problem. exactly

N streams of costs will be generated, wich one stream corresponding to -
each controller. The costs ot a multi-person controlled diffusion will
be formulated below for the N-person problem, but it should be borne

in mind that the formuiation for the zero sum prchlem 1s exactly the

same. except that the gubscript 1 relating the cost streams with the

controllers will be dropped. e 1 M

Each cost stream is comprised of the same three types of costs
that were specified in Mandl [16] and Chapter I1. The continuous move-

ment cost for the ith person is defined by the bounded, continuous

real-valued functicn ci(s,a) on § x Kl x - x KN; let c(s,a)
denote the N-component vector of these functions  The cost for the
1th person due to instantaneous returns from boundary rj 15 expressed

by the real-vaiued function aji(s) on S, which is 1integrable with

respect to uj(s); lec VJ(s) denote the vector of these functions.

Finally, the cost for the ith person due to the termination (absorption)

.
ot the process at boundary «r s +,,. and A, denotes the vector -

J ji h]
of these costs.
1f Ci(t) is the total of the ith person’'s costs generated by

the process up through time ¢t, and C(t) = (Cl(t)- ,Cx(t)) 1s the

ve:rcr of these costs, then the N-component vectol

o

v(s) = E_ [e""“dcu)
)

54~
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denotes the conditionai expectation of tie totai discounted costs of

the process gilven an initial state s, a control a(.) ¢ M, and a

-}

discount factor e ', % > (0 . From Mandl [, p. 149 we have the
’ P

following result.

Theorem 1. The vector of expected discounted costs corresponding to

a(-) e M 1is the unique function v(s) on § such chat v'(s) is

continuous,

(1) d(s,a(s))v"(8) + b(s,a(s))v'(s) - iv(s) + c(s,a(s)) = 0

holds for every s ¢ (ro,rl) wiiich is a countinuity point of a(s), and

6 < Y - b " - - j:: !
(2) ( J + j)v(rj/ Oj Jﬁv(s) + j(s))duJ(s) (-1) N (zj)
S
+ dj(Av(rj) - c(rjga(rj))) - (jlj = 0, j = 0,1 .

If the process Is non-conservative and neither boundary is purely

adhesive, that is

vy , <, + ", +2 >0, j = 0.1,
DI LR R .

ther. by Mandl [16, p. 152] the vector v(s) = ch(x) oif the expected

total undiscounted costs is finite and 1is the unique solution cof (1)

and (2) for * = 0 . If the process 1s conservative (x, + < = 0).

0 1

then the total undiscounted costs may be infinice The vector

¢ = (01, —,GN) in the following theorem, which is an immediate

-58<
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consequence of Mandl [16, pp. 152-157, 168], can be interpreted as the o
»e
vactor of mean costs per unit time,
-t
Theorem 2. Let S e 0 and assume at least one boundary is not - V
purely adhesive, that is, ™ + 60 + nl + Gl >0 . If v(s,r) 1is the i g
vector of expected discounted costs corresponding to X > 0 and some 1
i
a(-) ¢ M, then g
I
im Av(s,)) = 0 and lim =Sv(s,}) = w(s) , ;
A+0 A+0 1
where O is some vector independent of the state g, and w(s) 1is 1 ‘
some absolutely continuous vector=-valued function on S . Moreover, I
P(ltm t7lc(e) = @) = 1, I
t-rw :
and (0,w) 1s the unique pair satisfying Y
H
(3) d(s,a(s8))w'(8) + o(s,a(s))w(s) - O + c(s.a(s)) = O e
)
L]
for every s ¢ (ro,rl) which is a continuity point of a(s), and
S -
(4) 8 f{ fw(y)dy + v (s} du, (s8) + (-l)jr' w(r,)
34\, 3 3 3y
J
+ o,(e(r,,a(r,)) - 9 = 0, = 0,1 . I‘
J( j. ( J ‘)) J » g
-56- =
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2. The Zero Sum, Two-person Game Problem,

In this and the following three sections we consider Jiffusion
processes which are controlled by twe persons (N = 2). but which gener-
ate single streams of costs. The persons have c¢pposite objectives; the
first wants to minimize the costs while the other wants to maximize the
custs. Note that this zero sum game can be regavrded as a special case
of the non-zero sum game problem for ¥ = 2 by letting the second
player's costs equal the negative of the first player's.

Ve shall consider a single stream of costs and therefore omit
the subscript on all cost symbols. For any particuiar problem, player 1,
who operates the first control component, endeavors to choose a control
al(«) € Ml so as to minimize the expected costs generated by the
process- Player 2, who operates the second control component, endeavors
to choose a control az(-) € H2 SO as to maximize the costs generated
by tae process. By a solution to this game is meant some admissible
control which 1s a saddlepoint of the expected cost function. Thus, if
player 1 unilaterally deviates from this optimal control, then the
expected costs cannot be decreased but they may increase. Similarly,
player 2 can unilaterally only decrease the expected costs.

The following two sections provide results respectively for the
discounred cost case and the undiscounted cost case The method for
solving a problem 1s basically the same in each case A differential
equation is solved and the solution 1s used to determine the saddlepoint
cf a function with respect to all admissible controls. 1i this saddle-

point exists, then it is used to obtain an optimal control, that 1is.
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a solution to the zero sum, two-peraon game. Saction 5 indicates &

oy

possible application of this model to optimal welfare policies,

3. The Zero Sum Problem with Discounted Costs.

Let v(a,al,az) » v(s) denote the expected discounted cost of
a process corresponding to the admissible control a = (al,az) ceM.
Then v(s,al.az) will be the unique solution of (1) and (2). The
control a € M 1is said to be optimal if for all 8 € M, all a,cMy,

and all s ¢ S we have

v(s,il,az) < v(s,al,az) < v(s,al,az) .

in which case v(s,al,éz) is said to be the value of the game. We shall

i Gt B om) Bt S0t Ot OGN B 0 O

later prove that the value of a game, 1f it exists, 1s provided by the

following.
Theorem 3, There exists a unique solution v(s) to

(5) v'(s8) + min max_ {d(s,a,,a )-l[b(s,a ,as)v'(s)
aleA; achs

PR SIS Suvay S\

- v(s) + c(s.al,az)]} =0

14

satisfying
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Lemma 4. Let X and Y be compact topological gpaces, If f 1s a

_ . . RIS P
(6) (8j + KJ)V(rj) Bj f(v\a) * vjka))duj(s) (-1) ﬂjv (rj)
S
+ oj(kv(rj) - Yj> -~ '3Aj = 0, 3 = 0,1, 1
where vy " am§21 amea:\(z c(rj,al.az) , j=0,1.
1 rj 2 rj

Before proving this theorem, some notation will be introduced and a

number of preliminary lemmas will be proved.

-1
Define: a(s,al,az) » d(s,al,az) .
B( ) = bls,a,,a,)d(s,a,,a,)"t
Snalvaz S, 1°4) 8, 1132 ’

-1
Y(s,al,az) a c(s,al,az)d(s,al,az) ,

f
<

81(5nV1.V2) 200

gl(s,vl,vz) -min max 15(s,al,az)v2 -Xa(s,a

y@a)V
a eAl a eA2 177277
1s 27 s

+ v(s,3,,4,)} ,

) (gl(s.vl.vz))

and g(s,v,,v,)
1*7°2
82(50V13V2)

We have the following result from Berge [2, pp. 115-116].

lower (upper) semi-continuous numerical function on X = Y and

59
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lower (upper) semi-continuous mapping of X 1into Y such that. for each

x. Ix ¥ ¢, then the numerical function h defined by
h(x) = sup{f(x,y) | y e I'x}

is lower (upper) semi-continuous on X .
Lemma 5. If Ai and Az are continuous at s, and (‘I,Vé) are

arbitrary, then g( ,vlsvz) is continuous in (s,v,,v,) at (3.71.75)'0

Proof. For 1 = 1.2 let Ci C E denote a compsct set containing an
open neighborhood of ‘31 . With the notation cf Lemma &, identify X

with S x Kl x Cl x C2r Y with Kz, f with £(s al“aZ)VZ - Aa(s,al,az)vl
+ \(s,al.az), and T with Az . Conecl.de by Lemma 4 that the numerical

funccion

amgzz {B(s al,az)v2 - Aa(s,al,az)vl + y(s;aliaz)}
27s

18 continuous at (5;61;32) for all a, € Kl . Repeating this reason-
ing 1n a simila: manner. ¢onclude that gz(s,vl;vz), and hence, trivially,
g(s;vy:v,): are continucus 1n (8;visvy) at (s.v,.v,) .

In the following lemma, we use the norm Hg(S;vl,vz)H

= max {suplg)(s.v, v2)|; suplgz(s,vl,vz)l)
se$ + 8-S

Lenma 6. The function g(s,vl‘vz) is Lipschitzian with respect to

(vl_vz), that is for some positive coustant L not dependlag on

-60-
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on 8, v, or vy,

|
Hg(s.vl,vz) - g(s,vl,vz)ﬁ < Lﬂ(vl.yz) - (Vl,?é)ﬂ
2) .

for every s ¢ S and every pair (v;,v,), (;I';

Proof. Let s, (v),v,), and (61,35)- be arbitrary and without loss

1 8

of genérality assume 32(8,71,32) < gz(agvl.vz) . Suppose &, € Al

is such that

'gz(sbvltvz) - a‘;‘g:z{le(sgalaaz)vz - )‘a(sialoaz)vl + Y(S;algaz)}
5

and supposa 32 € Ai is such that

maxztB(s,al,az)v2 - Aa(s.al;az)vl + y(s,El,az))
azeAs

- B(s.aliaz)v2 - X&(s,al.gz)vl + v(s a,.a

l’- 2)

Then. . -gz(sgvleVZ)

= min. max_{8(s.a
acAl a_ca
18 2°"s

l‘BZ)Ué - Aﬂ(ﬁ.él;az);l + Y(a,al,az)}

;_am:: {B(s,al.az)v2 - rals,a;.a))v, +1(s,a,.8,)}

27s

-61-
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80 gz(slvltvz) - 82(3';10\-’2)

{A

‘m::2(8(s‘;l'a2);2 - Aa(s,31.32)31 + y(s.El,az)}
278

max {B('sal|az)v2 - xa(’.;l.az)vl + Y(a.;l|32))
acha

1A

9(0.31.32)62 - )\G(s,-al,;z);l + 7(5,51,32)
-{e(s.al.az)vz - xa(s,zl.az)vl + Y(s,al,az)}

Cllv2 - v2| + ACzlvl -v

in

!
1' ¢

where C, = mex }B(s,al.az)! and C, = mav ' (s,algaz)l .

1 seS 8eS
aleKl alekl
326K2 achz

Thus the desired result follows with L = max{l,C, + ACZ} .

1
In subsaquent lemmas we use v(s,ul,uz) to denote the solution
of (5) on S satisfying v(ro,ul,uz) -y and v (ro,ul,uz) = u,
3 . - 3
whers; of course, v (s.ul,uz) EEV(S’UL'UZ) . This 1is not to be
confused with the notation at the beginning of this section. It should
be clear from the contexiL whether the second and third arguments of

V(S;ul,uz) are boundary conditions or admissible controls,

Lemma 7. For wu,.u, ¢ (-*,%) equation (5) has a unique s»lution

-62-
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v(s,ul.uz) on S satisfying v(ro,ul,uz) - uy and v'(ro,ul.uz) -u, .

Proof, It suffices to show the equation

a[V1
A - sy

has a unique solution on S satisfying vl(ro) -y and vz(to) -u,
because tlan v(ssul,uz) = vl(s) « By differential equation theory
and the pilecewise continuity of As' Lemmas 5, 6 and a result in

Edwards [6g pp. 153-155] imply the result.

Lemma 8. The functions v(s.ul,uz) and v'(s,ul.uz) are continuous,
strictly increasing functions of U, with limits 2= as u, to  for

each fixed s ¢ (ro,rl] and each fixed u, € (-=,®) .

Proof. We first show the function v'(s,ul.°) is strictly increasing.
Suppose not, so that for some u, € (==,=), 8y € (ro,rll. and pair

. v —— n v <
u, U 5. say, we have v (so,ul,uz) v (so.ul,uz) and v (a,ulguz)
vf(s,ul,ﬁz) for all s e [ry,sy) « Ic~follows that v'"(s,u;,u,) >
V"(s,ul,ﬁz) for some s < s, in every neighborhood of s, and
V(8getysy) < v(so,ul,ﬁz) . But since a(s,a;;a,) > 0 and by continuity
we have v"(s,ul,uz)_l v"(s,ul,ﬁz) for all 8 < 8, in some neighborhood
of 8y: @ contradiction. Thus u, ¢ 52 must imply v'(s‘nl,uz) <
v’(s,ul,ﬁz), in which case v(s,ul.uz) < v(s,ul,ﬁz), for each

s (ro,rl] . The continuity of v(s,ul,uz) and v'(a,ul.uz) with
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respect to u,y follows by atandard differential equation theory.

To ghow the limiting behavior of v(s,ul.uz) and its derivative,

it suffices to consider u, -+ = and uy < 0;

p 2 0 reduces to this case and the proof with uy T - is simil.r.

For arbitrary Uy 0, g € (ro.rll, and L ¢ (0,=), it suffices to

the situaticn with

u

show v‘(sopul;uz) » L for scme uy € (-°,%) . To do this, we consider

the dirfferential equation
" - - .t AL - :
) y"(8) Cgy (8) + 22,y(8) CY ;

where CB e pax 15(5’31982)1; C > max ,-(u,al,a2)| .

8e$S 8eS
alsKl alsKl
azaKz azaK2

and C2 >0 . Now i1f y(s) 1is a solution of (7) with y(ro) =

£ -t ‘QX = - 1
uy (+=.>) and ds(ro) 4y € (-*,*), then 1t 1s easy to verify that
y (s8) = » as uy for each s € S . 1In particular. with

C2 » C = min Q(ﬂ'al‘dz)’ there exists some constant L, > L such that

scS 1
alaKl
32:K2
X, + s,
if p e e =5 | - then the solution to (7) satisfying y(p) = O

and y'(p) L, wili be such that ¥'(s) - L for all s ¢ [p;aol

Also, with C2 =« C = max a(s,al 82)‘ there exists some constant u,
58S
alaKl
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v'(p.ul.uz); and C2 a C

By comparing v(s,ul.uz) with y(8) as we did with yis),

such that the solution to (7) satisfying y(rO) = u. and y‘(ro) -y

1 2
will be such that y(s) = 0 for some 8¢ jr., T0 + 50| and y'(a) > L
0 ——— =

for all s ¢ [r0.§]; let y(s) demote this solution on

1l
[ro,g] .

We now clafm that v‘(so,ul,uz) > L because v(s,ul.uz) is

bounded below by appropriate solutions of (7). For example, suppose

s € [r0,§] is such that 0 > V(Q,ul,uz) > y(8) and v'(éiul.uz) = y'(s)

Then for some (al,az) € A;

V"(g:ultuz) - ;"(g) - [CB - B(stalbaz)];' (g)

+ A[a(s,al,az) - Clv(d,u )

1*%2

+ AE[V(ﬁ,ul,uz) - y(8)) + [cY - Y(§,al,az)]

e

Note the last term on the right hand side is positive and the others are

non-negative so v"(§,ul.u2) > y"(8)

for all s in some neighborhoed of 3§ , In particular, if we let § = r

0
then it becomes apparent that v'(s,ul,uz) = y'(s) 1is impossible with
v(s,ul,uz) 20 for s : (ro,s] » Thus v'(s,ul,uz) > y'(s) for each

such s and there exists some p ¢ (ro,g] such that

v(p,ul,uz) = (
and v'(p,ul u2) 2L
Now let y(s) be the solutica to (7) with y() =0, y'(p) =

and note that y'(s) - L for all s ¢ [p.sol

we conclude

the desired result.

65«

» By continuity, v"(S;ul,uz) >y ()
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Lemma 9. For fixed u, the function

V(rl:ulsuz) - !V(soultuz)dul(s)

is continuous and strictly increasing in u, and diverges to *= asg

Prosf. Let u, < ué and 8 ¢ [rn,rl] be arbitrary. By Lemma 8,

)

% vy o et )
v (s,ul,uz) is increasing in u,, 80 v(rl,ul,uz) v(s,ul;u2

v(rlful:uz) - v(E,ul‘uz) » The function in this lemma is just a convex

combination of the right hand side of this inequality, so by this ine-

quaiicy this function is increasing in u

5
Since v'(s,ul:uz) > Ixoas u, v I®, we have for any s e (r
that V(rl’ul’UZ) - v(S;ul,uz) orToas u, i, Thus, by the convex

combination argument the function in this lemma has the same limits.

Centinuity follows from the continuity of v(s,ul.uz)

Lemma 10. Let B(s). a(s) and v(s) be measurable real-valued functions

on S with [8(s)! < Cg = *. als) 2 Cy- . and y(s) ; 0, and

suppose for some s ¢ (rgory)s u, » 0, and wu, > 0, the function wv(s)

2
18 a solution to

vi'(s) = E(s)v (8) + a(s)v(s) + v(s)

satisfying v(s) = u, and v'(s) = u

1 2

~66-
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Then for all s ¢ (8,r) we have v(s) > 0 and v'(s) > O .

Proof. Supposa there is a smallest s, > s such that v'(so) =0,

Then v(so) > 0, and by continuity, v"(s) > 0 1in some neighborhocd
of 8y © Hence v'(s) : 0 for all large enough s < 84 contradicting

uy 2 O and the definition of sj .

Proof of Theorem 3. Denote

N e 8 [v (s)du, (8) + 0,y, + < A, j = 0,1,

3 ig 1M 3137590

By Lemma 7 it suffices to show that v(s,ul,uz), the unique solution

-4 ' o
of (5) with v(tO’ul‘u2) uy and v (rO’ul'UZ) Uys satisfies

j.ul.uz) - Gj fv(S.ul.uz)duj(s)

(8) (Ao, + 9. + < Iv(x
] b 3 3
- (- j ' ) N =
(-1) nJv (rj’ul’UZ) NJ 3 0,1,
for unique values of vy and v, There are two cases.
Case 1: €y = "0 ° 0
By (8). Uy = NO/(XCO + no) . By Lemmas 8 and 9, the left hand

side of (8) for 3

1 increases continuously and strictly from ~=

t> = as u2 increases from -» to =, Hence (8) for jJ = 1 is

satisfied by a unique value of Uy -
Case 2. GO + "o 0

-67-~
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For P ¢ (==.») denote

fP(s,vl,vz) - -min1 maxz(ﬁ(s,al.az)v2 - Aa(s,a),a,)v, + P'(S’al'az)}
aleAg azeAs

and let vP(s,ul.uz) denote the uniqu2 solution to

(9) Vg(sﬂul;uz) - fP(s’vP(s’ul'u2)' V;(slulsuz))
and
(10 vP(rO,ul,uz) = U vé(ro.ul,uz) =y,

: Then by differential equation theory VP(S'ul'UZ) and vﬁ(s,ul.uﬁ) are

§ continuocus in (P,s,u,,u,) . We seek to show that v,(s,u,,u,) satis-
i 172 1 1°72
i fies boundary condition (8) for a unique choice of the pair Upaly o
i We can rewrite (8) for J = 0O aud general P as
|
(11) 60 Sjvp(s,ul,uz)duo(s) + ”OUZ = ¢(Ul)
[ where
]
; - R . - N R o
{12) v(Ul) ('“0 + &g O)ul Ny
We ficst show that for each uy ¢ (==,%) and P . (-=,<) there exists

& unique u, = uz(P,ul) satisfying (11). But this follows from Lemma

8. because then the left hand side of (l1) 1s <ontinuous and strictly

-hB-
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increasing in u, with limits *«< a8 Uy > e, Note that, since

both sides of (ll) are continuous in (P,ul.uz). the function “Z(P'“l)

is continuous in (P’ul) .

It remains to show that v(s,ul) = vl(s,ul,uz(l.ul)) satisfies

(8) with j = 1 for a unique value of Uiy that 18, there is a unique

Uy for which

(13) (Aol + 614-<l)v(rl,ul) - 81 g{v(s,u )dul(s) + ﬂlv'(rl,ul) = N,

We first show that some u, € (=»,~) gatisfies (13). Since the left¢

hand side of (13) 1is continuous in U it suffices to show that the

left hand side of (13) diverges to = asg u, - tw . We discuss only

the case uy +» gince the other is similar.

We show this result by considering the limit of Pv(s,P-l) as

l) and

1

P+ 0. To this end, for P > 0 denote u(P) = Puz(l,P-
w(P) = P¢(B™Y) . Now Pvl(s,P'l,u ) = v,(s,1,Pu,), so Pv(s,P ) =
vP(s,l;u(P)) . In view of this and (11), u, = u(P) 1is the unique number
satisfying

(14) GO_J;P(s.l,uz)de(s) +oagu, = s(P) .

Since w(P) has a limit as P + 0, which we denote by ¢(0), equation
(14) has a unique solution 52 for P =0 . Since v,(s,l,u)) and
v(P) are continuous in (P:s.uz), it follows that u(P) 1is continuous
in P and has the limit Gz as P + 0; we denote u(d) = ;2 . 1n
summary, PV(S;P-l) - vO(S;lfu(O)) as P+ 0 .

We are now in a position to show that the left hand side of (13)

-5C.
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dv
diverges to > as u to , If —Eg(ro.lgu(O)) > 0, then Lemma 10

applies and v'(s,1,u(0)) > 0 for each s ¢ (ro,rll . On the other

hand, 1f va(ro,l,u(o)) < 0, then by (14)

60 “[;O(Q,I.u(O))duo(s) & )\c, +x,+6 -~ LI

g 0 0 0 ;1,u(0)) > 6

]
0{ro 0°

Now eo > 0. for if not then "o 0 and by (14) vb(ro;l,u(O)) o
(Xco + <O)/ﬂ0 > 0, a contradiction. Thus for at least one 8 ¢ (ro,rl)
where duq(s;) > 0 we must have vo(8y51,u(0)) > 1 = vo(roiliu(o)) >

£ 2
It follows for some 59 € [ro,sl] that vo(so,l.u(O)) 0 and

vé(so=l,u(0)) > 0 . Applying Lemma 10, we conclude for all s ¢ (so-tl]
that vO(S;liu(O)) > 0 and vé(s,l,u(O)) >0 .,

Let Y denote the left hand side of (13) with vo(sgl,u(O)) sub-

stituted for v(s.ul) . We have by the preceding argumencs that
vo(rl.l,u(O)) > 0 and v'(rl,l,u(O)) > Q0 , Moreover, for any

\ Y > 3 A B
s € [ro,rl_ we have vo(rl,l,u(O), vo(s,l,u(O)), so if N 0
then

el[vo(rl,l,u(O)) - §/-vo(s,l;u(o))dul(s)] -0,

in which case Y O . Letting u T in the left hand side of (13),
we have

ulf:- ‘.('~51 + @l + -<l)v(rl.ul) -5 é[v(s.ul)clul(s) + 5
1

V‘(rl-ul)}

~70-
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POy + 8y v (,1,u(P)) - 3 ,/’Vp(s'l'U(P))dpl(S)

P40 S

+ ﬂlv;(rl,l.u(P))}

nlim!-«pmq
P+0

Thus, by the remarks following equation (13) there exists some

U € (-»,2) which satisfies (13); it remains to show this Uy is unique.

Suppose there exist two numbers C0 < Cl and corresponding solu-

tions vo(s) and vl(s) of (5), (6) such that vo(ro) = CO and
vl(vo) = C1 . Let the Borel measurable function al(s) from S {into

K. be such that a,(s) = Al and
1l 1 s

P SN . \
minl maxz{B(s,al az)vo(s) u¢(s,al,a2)vo(s) + ((s,al,az);
aleAs a2cAS

o amaiz{s(s.al(s),az)vé(s) - Aa(s,al(s),az)vo(s) + 7(5131(5)'82)}
2 s

tor each s € S . Let the Borel measurable function a,(s) from §

into K, be such that a,(s) ¢ A2 and
2 2 s

maxz{B(s.al(s);az)vi(s) - ka(s,al(s),az)vl(s) + \(s,al(s),azﬁ
a, A
277s

a B(s.al(;);az(s))vi(s) - Aa(s,al(S).az(S))vl(S) + v(s,al(s);az(s)

for each s ¢ S . Then

-71-
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0 vl(s) + a:i: azzxz(e(s,al,az)vl(s) Au(sgal;az)vl(a)
8 8

+ Y(s,algaz)}

< v']'.(s) + maxz{e(a’al(S)’az)vi(S) - A&(S;al(s)-az)vl(s)
a,cA
2" 7g
+ Y(s,al(s).az)}

- VH(S) + B(ssal(s);az(s))Vi(S) - AOl(s,al(s);az(s)vl(S)

+ v(s,a,(s),a,(s))
and similarly,

va(s) + B(S.al(s);az(s))vb(s) - Xa(s,al(s),az(s))vo(s)

+ v(sa,(s),a,(s8)) < 0.

Defining the Borel measurable function

2

yis) = igi(vl - vy(s) + B(S:al(S).az(S))gg(Vl RIYACY
| - ,\a(s,al(s).az(s))(vl - vo)(S) ;
: we see that y(s) > 0 . Letting v(s) =v,(s) - vy(s), we see that

18 a solution to

v'(g) = -E(S;al(S),az(s))V'(s) -+ la(S,al(S),az(s))v(s) + u(s)

* satisfying (by subtracting boundary conditions (6))

-724
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(s) - (-LInv'x) =0

(15) (g, + 8 + «,)v(r,) - ¢ J[;(s)dpj ] ]

3 3 J 3 3g

j = 0.1;

as well as v(ro) = v(ro) - C1 - C0 .

It remains tn show that v(s) cannot simultaneously satisfy all
three of these boundary conditions. Assume v(ro) “C - CO and (15)

holds for 3j = 0 . Let s, = mia{s € S|v(g) =C, - C. and v'(s) > O}

0 1 0

Note that 8, exists because if v'(ro) >0 them s, =7r

0 0* whereas

if v'(ro) < 0, thea by (13)

eO J[v(s) duo(s) - (Ago -+ et + go)v(ro) - nov‘(ro) > aov(ro)

ey

s0 80 > 0 and for some 5y ¢ (ro,rl, with 6“0(51) > 0 we have

0’ ia whica case sO € (rc sl

v(s) > 0 aad v (s) - O for all s ¢ s

v(sl) > v(r ] . By Lemma 10 we have

.t,) . In particular, the

0

Fe

leit hand side of (15) is positive for i = 1 &and Thecrum 3 1s proved.
The fcllowing thecrem provides & nezessary anc suificient
(saddiepcint) condit:on :eor an wlmissicie iLJntrol te be a solution to
the ze: o sum; Lwo-2ETISON gade. & now. reve:t to the criginal notation;
where vxs.al,az) denotes the expected disc._unted cos: of a process

corresponding to the cont:cl a = (a,,o.) ¢ X

Thecrem 11, Let v(s) be the umique soluticz ¢ (3); (¢). A control

& = (a ,52) € M 1is optimal if zad on.y if

-73-
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(16) m::z{d(s al(s) a ) [b(s.al(a).az)o'(.) - Av(s) + c(s.ﬁl(s).az)]}
)

- d(s.al(s),az(s)) [b(s. 1(8)s a (8))V'(8) = AV(s) + c(s a (s).a (a))]

= nin.{d(s,a .a (8))~ [b(s,alfaz(s)) (8) = Av(s) + c(s,a ;82(5))]}

leAa

for every 8 € S which 18 a continuity point of a and, for j = 0

and j = 1, cj > 0 dimplies

),a ) = c(r (r Y, a (r.))

(17) max, c(rj,a (rj J 3 j

a,e4A
x

27y

= min c(r,,a ,a (r ))
a CA 3l 3

LTy

Moreover, if a is optimal then v(s) = v(s,&l,ﬁﬁ) is the value of the

game . :

Proof. Suppose (16) and (17) are true. By the theory of saddlepoints

wa have
min max.id(s,a '3, l[b(a,a ,a.)v'(8) = Av(s) + c(s,8,,a,)]}
2 l 172 . 1'72
aleAs azeA

= d(s,4,(8),3,(6)) 7 [b(s,d,(8),4, ()0 (8) = AF(s) + c(s,3,(s),3,(a)))

“74-

Al

. . Ao




't

.2

.

e ]

] —— L) iomimg [

solution of (1) and (2), that is,' v(s) = v(s.&l.52) . 3
. : ~ % li
Wich az(s) fixed, in a similar manner we see that v(s) is 1
the unique solution of (35), (6) of Chapter 1I, that 1is, v(s) 1is the T
?inimal expected discounted cost for an ordinary optimal control problem g
involving the control al(s) . In view of (16) and (17), we have by
Theorem 6 of Chapter II that v(s.e;,az) < v(s;al,az) for each 8, € M1 5
. ' R . i
and each 8 ¢ S . Similarly, v(a,al,az) i'v(s,al,az) for all a, € M2 . %
Hence a 1is optimal and v(s) is the value of the game.
Conversely, supjuse 2 is aa optimal control., First we'll show
that
. N -l - -~ - - N - ~
d(s,a,(s),a,(s)) (bis,a;(s)4a,(8))v" (5,5 a,) - A (s,ay,8,)
+ 2(8,3y(8),a,(s))]
-1 , " a A
= maxz{d(s,al(s),az) [b(s.al(s),az)v (s,al,az) - Av(s,al,az)
a,cA
27 s
. + c(s,él(s),az)]}
> min max {d(s,al.az)-l[b(s,al,az)v‘(s,al,éz) - Av(s,bl.éz)
a,cA a,tA
1778 278
+ c(s,al.az)]}
~ _l 1 . : y ( -
> max min {d(s,al,az) [b(s,al,az)v (5'31’“2) - Av\s,al,az)
a,ce a,ta
2778 1778
+ c(s,al.az)]}
~75-~
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and, if ¢

3 \

>0, min max c(rj,el.az) = c(r .él(rj).az(rj))

alsArJRZEArJ

Substituting these in (5) and (6), we see that v(s) 1is also the unique




2 minl{d(a,al,az(s))-l[b(a.al.az(s))v'(5,31.32) - xv<a,31.32)
a.cA
178

+ c(s,al,az(s))]}

= dls,i(8),R,(8)) M [b(s,8) (8),8,(8))v! (5,8,,3)) ~ Av(s,d),d,)

+ c(s,il(a),ﬁz(a))] .

Now v(s,al,ﬁz) = inf v(e,al,az), 80 by Theorem 6 of Chapter II, the

aleMl

last inequality is true; similarly, the first one is true. The inequal-
ities are true by saddlepoint theory, so all are equalities, Similarly,

if o, > 0, then

J

c(rj.al(rj).az(rj)) - am2:2 c(rjaal(rj).az)
2 rj

s min max, ¢(r,,8,,8,) = min c(r,:a ,a.(r,)) .
ach% azeAi 3t alsAr 3Ty
J 3 3
Substituting .:'ese equalities into (1) and (2), we see that v(s,Ql,az)
is the unique solution of (5) and (6), that is, v(s,al.ay) s v(s) .
Substituting v(s) for v(s.;l,aﬁ) in the above equalities yields (16),

and Theorem 11 is proved.

A diffusion process two-person, zero sum game problem can be
solved in principle as follows. First, obtain the solution v(s) ¢to

(5) and (6). Second, consider the map I from S into Kl » Kz such
- 1 . 2 -
thau (61‘82) e T(s) 1if and only if ay €A, o, €A, and (°1’az)

-7h=
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is a2 saddlepoint of d(s,al,az)-l[b(a.al,az)v‘(s) - av(s) + c(s,al.az)] .

1f cj >0, j = 0,1, then redefine T(rj) so that (al,az) € P(rj)
if and only if a, ¢ Al y 8, & A2 » 4ud (4,,a,) 1s & saddlepoint of
1 tj 2 rj 1*72

c(rj,al;az) « DNote that I'(s) = ¢ is possible for some s ¢ S, in
which case the game is without solution. On the other hand, 1f T(s) o ¢
for sach 8 € S, then v(s) is the value of the game, even if it cannot
be attained. Finally, endeavor to choose a piecewise continuous function
a(s) such that a(s) € I'(s) for each s ¢ S

The following result is a sufficient condition for (16) and (17)
to be satisfied by v(s) and some Borel measurable control a(s), that
is; for the map mentioned abeve T'(s) ¥ ¢ for each s ¢ S . The real-
valued function h(z) on the compact, convex set C C E° 1is said to be
quasiconvex if {z ¢ Clh(z) < o} is convex for each =« ¢ E . Thi.
function is quasiconcave if <=h(z) 1ie quasiconvex. Corocllary 13 is an

immediate consequence of Theorem 12 which, in turn, follcws easily from

a minimax theorem by Sion [20].

Theorem 12. Let v(s) be tha unique colution of (5), (6) and suppose
A; 1s convex for each s ¢ §, i = 1,2, Then there exists some Borel
measurable control a(s) = (al(s),az(s)). with a](s) € Ai and

az(s) £ Ai for each s ¢ §, wvhich satisfies (le) and (17) provided
~1 R N 5
d(S,al.az) [b(s.al,az)v (8) - xvis) + c(s,ay.a,)]

X I3 i - A l ' .
and djc(rj,al,az), J = 0,1, are quasiconvex in al ¢ Al 1¢1 each

a, ¢ A§ end s ¢ 5 and are quasiconcave in a, ¢ Ai for each

L
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a, € Ai and s ¢ S .,

Corollary 13. Let v(8) be the unique solution of (3), (6) and suppose
Az is convex for each s ¢ S, 1 = 1,2 . Suppose d(S;al.az) is con-

stant with respect to (al,az), b(s,al,az) is affine with respect to

.2
(al:az), c(sial:az) is convex in a, for each a, ¢ AS, and

c(s,al;az) is concave in a, for each 8, ¢ A:. all for each s ¢ S .

Then (16) and (17) are satisfied by some Borel measurable control

1 2
and az(a) € As .

(al(a).az(s)) with al(s) € A

]
Example,
0 « Iy < F d(s,al,az) = A>Q0
At = {a, € E l la,| < z,8}, 2, > 0 b{s,a,,a,) ® a.a, /s
s 1 ! 1" - "177'r A1 P12 172
A2 = {a, € E l la i < z,8}, 2, > 0 c(s,a,;a,) = C
s 2 20 = 727 <2 T2

L boundary condition, v‘(ro) = 0 (reflection)

5 boundary condition: v(rl) =4 (absorption with cost kl) ]

For any value of s, v(s), or v'(s) we have f

-1 412 ! |

nin max_ A —w'(g) - sv(s) + C f
alEA a LA2 . s :

[ 2 s i’

1| 813, ] %

2 nax min A —i;:v'(s) ~ lv(s) + C; :

a.cA2 a1aAl
- 8 Py )
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= A7Ye - av(e)) ,

so a(s) = (0,0) 1i; the optimal control for all s € S , Therefore,

the value of the game is given by (1), (2) to be v(s) = Clecx + Cze-tx
tr 2tr 2trx
+ C/A, where t = V)A/A, C,=e l(ll —c/M /e lie 0). and
tr 2t(ry - r
C,=e l(kl - C/N)/ (e =1 o), 1) .

4._ The Zero Sum Problem with Undiscounted Costs,

The zero sum, two-person diffusion process éame problem with
undiscounted costs will be one of two types, depending on whether the
boundary conditions are conservative or non-conservative, The results
in this section parallel those of Section 3, and, consequently, they
will brief. The conservative case will be treated in the second half
of this section. For the purposes of this section, the boundary condi-
tions are said to be non-conservative if at least one boundary is

absorbing and neither boundary is purely adhesive, that is,

Ko + vy 0, x,+mn, +6, >0 j=0,1.

Let v(s,al,az) » v(s) denote the expected undiscounted cost of a non-

conservative process corresponding to thea admissible control a = (al,az)

¢ M., Then v(s,al,az) will be the unique soltuion of (1), (2) with
A=0, The control a e M 1is said to be optimal if for all a, ¢ Ml'

all a, e M

2 29 and all 8 £ " we have

Tl e A e D



v(s,él,az) :_v(s.ﬁl,ﬁz) j_v(s.al,ﬁz) .

in which case v(s,al,az) is said to be the value of the game, It will
subsequently be proved that the value of a game, if it exists, is pro-
vided by the following result whose proof is a generalization of one by

Theorem 14, With non-conservative boundary conditions, there exists

a unique solution v(s) to

(18) v"(s) + min  max {d(s,al.az)-l[b(s,al,az)v'(s) + c(s,al,az)]} = 0

aleA: azeAi
satisfying
(19) (8j + Kj)v(rj) - ej §/.(v(a) + vj(s))duj(a)
-(-l)jnjv'(rj) - 64¥y = Kyhy = O j =0,1,
where vy - al:ézl amzzz c(ry5a1,3y) 3 =0,1.
rj 2 rj

Proof. Lemma 7 does not depend on A > 0, so for every U sy, € (=, =)
equation (18) has a unique solution v(s) satisfying v(ro) =y

and v'(ro) =u, . For fixed u, and v, denote w(s.uz) = v'(s)

and note that w(s,uz) is independent of v since it is the solution

of a first order differential equation under the initial condition

-80-
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w(ro,uz) =u, . Writing for j = 0,1

I jVJ(")““J(S’ POy Ty ' B

5 i
.
l we have that (19) is equivalent to 'y
s B
/]
3!
(20) KoYy = 60 w(t,uz)dtduo(s) - Tgup ® N0 , |
Sr
0
- s ;
1 /f
Ky up ¥ (&) +xy) w(t,u,)de = 8, w(t,u,)dedy, (s) ;
T Sr 1
0 0 H
|

orgwlrug) o= Ny

Eliminating u from (20), we obtain the equation for wu, :

1 2

~

o 1
(21) oco(e1 + <1) Jf w(t,uz)dt + <160 ‘/rjf w(t,uz)dtdbo(s)
3 519

S
FoRyTup TR R e iu) - kg g/;J[ wltyupddedi) () = <Ny = < Ky -
0

It remains to show that (21) is solved by a unique value of u since

2’
then u, can be obtained from (20). By Lemma 8, w(s,uz) is continuous

and strictly increasing in u and w(s,uz) ~ :o as u, - *<,  in which

2

case the left hand side of (21) has these same properties (see Mandl

2

R

[l6é, p- 163])). Hence (21) has a unique solution and Theorem 14 is proved.

Theorem 15. With undiscounted costs and non-conservative boundary

! -81-~
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conditions, let v(s) be the unique solution of (18), (19). A control e
: am= (al.az) €M is optimal if and only 1if -
(22) maxz{d(s.al(s),az)-l[b(s,al(s),az)v'(s) + c(s,al(s),az)]}
a, ecA
2 8 -t
= d(S.al(S),az(s))-l[b(s.al(s).az(s))V'(s) + c(s.al(s).az(s))] -
)y

= nin {d(s,al.az(s))'l[b(s.al.az(s))V'(3) + c(s,a),a,(s))]}

b

a1
al:.As i
-
H
for each s € § which is a continuity point of a(s), and, for j = 0 J.?
and j = 1, aj > 0 implies -
i
(23) max, c(rj,al(rj).az) = C(rj'al(rj)’az(rj)) @&
azsA i
r .
J ~ 1
= min c(r, ,a,,a, (z,)) . L
aleAi 3y -
J
Moreover, if a(s) {sg optimal, then v(g) = v(s,al,az) is the value
of the gome, .
This proof is essentially identical to that for Theorem 11, so it =

] will be omitted. A diffusion process zeroc sum, two-person game problem

in che undiscounted cost, non-conservative process case can be solved,

in principle, in the same manner as with the discounted cost case.

Moreover, there exist sufficient conditions analogous to those of

by some Borel measurable control a(s)

~82a
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Example.

s = [0,1] d(s,a.a,) = A > 0
A1 = {-Y,Y] CE Y >0 ‘ b(s,a,,a,) = a,a

8 ' ’ 91092 192
A = [-2,2]CE, z-0 c(s,a.,a.) = C

9 ’ ] ’ lt 2

(absorption with cost 4i.) .

ry boundary condition: v(ro) = A 0

0

rl boundary condition: v'(rl) = 0 (reflection) .
For any value of 8 or v'(s) we have

min nax (A_I[alazv'(s) + CJ}

2
aleAS azeAs
-1 , -1
= max, min_{A [alazv (s)+cC)t=4a"C,
a,cA“ a.cA
2 s 17s

so’ a(s) = (0,0) is the optimal control for all s € § . Therefonre,
the value of the game is given by (1) and (2) to be v(s) = -—%(C/A)s2
+ (C/A)s + AO .
We now discuss the other type of undiscounted cost problem, the
conservative case. For the purposes of this sectlon, the boundary
conditions are said to be conservative if neithei boundary is absorbing

and at least one boundary is not purely adhesive, that is,

83~
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Let G(al,az) e 0 denote the mean cost per unit time of such a process
corresponding to the admissible control a = (al,az) e M. Then

@(al,az) is the unique number to which there exists a solution to (3) and
(4). The control a « M 1is sald to be optiwmal if for all a

1

all 8, € MZ we have

0(3).a,) © 2(a),d,) < 0(a;.2,) ,

in which case G(alféz) is said to be the value of the game. The

following result characterizes the value of a game,

Theorem 16  With conservative boundary conditlons there exists a unique

number o such tnat the equation

(24) w (s) + min max_id(s,a ,a,)'l[b(s,a ,aslw(s)=20C
1. 1272
a,cA a~LA
17's 27 s
+ C(s""l*"'z)]} =0

has a solution w(s) satisfying

25 2 )[ 4]F A3y + . ()] du (8) F (-1)7 w(r) + o, - =0
(25) 3 2 . wiy)dy ;i J d J( J i) Ju( ; J(\j ) ;
h)

j=01




Proof. This proof is rather similar to that for Theorem 3, so it will

only be sketched. By Lemma 7 for every Uy S e (=%,») there exists
a unique solution w(s,uz,G) to (24) satisfying w(ro,uz.i) =u, - By
Lemma 8, w(s.uZ,O) is continuous and strictly increasing in u, and

w(s,uz,O) -+ *®» ag u, * t» , It follows that the left hand side of
(25) with w(s,uz,D) substituted for w(s) 1is continuous and strictly

increasing (decreasing) in u, and diverges to *= (¥®) as u, + t

2

is purely adhesive, then

2

for § = 0 (J =1) . Thus, if boundary r

0 = Yj and u, can be determined uniquely from the other boundary
condition,

On the other hand, if neither boundary is purely adhesive, then
to every O there exigts a unique number u, = uz(S) such that
uwis,?) = w(s,u, (&),l) satisfiles (25) for j = 0 . 1t remains to show
that w(s,?9) satisfies (25) for j = 1 with a unique value of €& .
Consider G-lw(s,C) for ©> 0, It can be shown as with Theorem 3

that u-lw(s,o) +> w(s) as & - = for all s ¢ S, where w(s) is the

solution to

w'(s) = -min max2{d(s,al,az)_l[b(s,al,ao);(s) - 1]}
a,eA a. tA =
17 s 2 s
satisfying
/]
("‘O < !‘0 w(y)dydl.o(s) + :Ow(ro) - .30 = 0 .

After showing that

-85-
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S

s

J[a(y)dydul(s) - nla(rl) -0 < 0
r

0

we conclude that the left haud side of (25} for j = 1 with w(s,0)
substituted for w(s) diverges to %= as & - *e . By continuity,
w(s,0) satisfies (25) for j = 1 with some value 0O . This solution
0 is unijue; otherwise a contradiction can be derived as was done with

Theorem 3 to show the unicity of v(ro)

Theorem 17. With undiscounted costs and conservative boundary conditions,
let ¢ be the unique number such that (24) has a solution w(s) satis-

fying (25)., A control a = (al,az) ¢ M 1s optimal if and only if

i -1 - i
(26) amizzid(s,al(s);az) [b(s,al(s),az)d(s) - G+ c(s,al(s),az)]}
27s

d(s.al(s),az(s))'l[b(s,al(s),az(s))w(s) -G + C(S’al(s)’aZ(S))]

minl{d(s,alraz(s))'l[b(s,al;az(s))w(s) ~ &+ cls,ap,a,(s))])

aleAs

for every s € § which 1s a continuity pcint of a(s), and, for

j=0 and j = 1, :j 0 aimplies

@M am?z c(r.;al(rj).az) = c(rj.al(rJ).az(rj))
27,
J
= min, <(r, &, a,(r.))
a eAl j L 273
1 rJ

~36-
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Moreover, 1f a(s) 1is optimal then < = G(al,az) is the value of the

game .

This proof is essentially identical to that for Theorem ll, so
it will be omitted. A diffusion process zero sum, two-person game
problem in the undiscounted cost, conservative process case can, in
principle, be golved in tiie same manner as with the discounted cost
case. Moreover, there exist sufficient conditions analogous to those
of Theorem 12 and Corollary 13 for equations (26) and (27) to be satis~

fied by some Borel measurable control a(s) .

Example.
s = [0,1) d(s,al,az) aA>0
A1 = [-Y Y] CE Y -0 b(s,a,,a,) = a,a
s i ! *T1'72 172
2
As = [«Z,Z) CE, 2 >0 c(s,al,az) = Cs

Suppose both boundary conditions are pure reflection. For any value of

s, w(s), and £ we have

min max {A-l[a a,w(s) = C + Cs])i
a.cA a €A2 172
1"%s 278
_"'l - N -l .
= max min (A “[a,a,w(s) = ¢ + Cs)]i = A "[Cs - <] ,
2 1 12
a,eA” alLAS

~87~-
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so a(s) = (0,0) 1is the optimal control for all s ¢ S . :Therefore,
1
the value of this game 1is given by (3), (4) to be 2 = C/2, with

w(s) = (9/A)s - 3(C/A)s”

5. Application: Optimal Welfare Policies.

Suppose the problem of detarmining some government's optimal
welfare policy can be posed as a diffusion process zero sum, two-person
game as follows. Lat the state spa.e corraspond to some population so
that the stata of the process will equal the number of people receiving
welfare Assume the boundary conditions are pure reflectioh, pet the
first control component; cperated by the governmment, be the cust of
welfare per person per unit time. Let the second control component.
operated by the population, equal the cocst of civil disturbances per
person per unit time. Finally, let the costs of this welfare game-be
represented by a continuous movenent cost which equals the sum of the
total welfare and tctal civil disturbance costs per unit time. We
naively assume the zivil unrest cost to the government equals the
reward (¢ g.. satisfaction) to the participants. Thus. the total ccét
tc the government equals the total reward to the population. and the
government accs to minimize. while the population acts to maximize, the
expected costs of this game

Presumably . the d:i1ft and diffusion coeffi:ients should reflect
thie fact that thie greater (e welfare ¢ost pur person the greuate:r the

tendency for the number of pecple receiving welfare to increase

RTINS
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Similarly, these coefficients should reflect any tendency for the number

of people recaiving welfare to decrease as the civil disturbance cost

s increased. This tendency would exist, tfor exauple, il the goverament

were to recaliate'by more strictly enforcing welfare algibility require-

ments., ~In summary, for avery combination of concrals,'che number of

people recelving welfare can be represented by a conservative diffusion

process.

Example. This example involves undiscounted costs. Let S = {[0,P] and
suppose A: - [O’Ci] for 41 =.1,2 . Let the diffusion coefficient be
A >0, the drife coefficfznt be the general function b(s,a,.8,), and

the continuous movement cost a,8 + a2P . By inepection, 1f a(s) =

(O,Cz) and @ = C.P, then (3), (4) have the unique solution w(s) = 0 .

2

Moreover, this control a(s) satisfies (26) so it>1s optimal and ¢

is the value of the game.

6 The Non-zero Sum, N-person Game Problem.

The remainder of this chapter describes a class oﬁ controlled
ditfusion procaesses whose control problems can be viewrd as non=zero
sum, N-person games. We consider the multi-person controlled diffusion
process of Saction l; these processes are controlled by N persons and
generate N stceams of costs (N > 2) , Controller 1 (L =1, ,N),

th
who operates the 1 control, endeavors to choose a control a, ¢ Mi

.th .
80 as to minimize the costs ot the 1 CoBL stream generated by tae

process. A game situation exists by virtue of the fact that the cost te

—89-
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the lth person is influenced by the actions of the other players

The optimality criterion used for these processes is that of a
Nash equilibrium point. 1f an admissible expected cost 18 defined to
be the expected cost ccrresponding to some admissible control, chen the
solution to this game will be some admissible control whose corresponding
expected cost 1s a Nash equilibrium point with respect to all admissible
costs Thus if player 1 unilaterally deviates from his component of
this optimal conttol then his exp.:cted costs will erther be unchanged
or increased The adoption of the Nash equilabrium point optimality
criterion 13 made in recognition of the fact that a variety of meritcr-
ius optimality criceria exist for non-zero sum; N-person game problems
In particuiar. a ''prisoner’'s dilemma' situation might exilst where the
piayers would gain by deviating from the Nash equilibrium point solution
in & cooperative manner .

The following two sections provide results respectively for the
disccunted ccst case and the undiscounted ccst .ase The main result
cf each secrion 1s a necessaiy and sufficient condition for a control
t. be optimal In additicn. a method based upon the theory of differ-
entiai games 1s provided for sclving a diffusion process non-zer2 sum,
N-person game prob.em This method 1s substantially the same as a
method used for su.ving an crdinary datiusicn process optimal cont:ol
problem The . primizing soiution c¢f an equaticn 1s substituted inte a

differential equation whise soluticn,  in tuin, 1s used tc obtain the

cpramal control The final two secriens indicate twoe possible sppilca-
ticns of this medes. .(ontrel of pelluticn and optimal warfare strategles
Te minirize ambiguity the foilowing terminclopgy is used The

-
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}E?_ggggrol a, ¢ Mi .s operated by the 1th piayer and 1y generally

& vector-valued funcrion on § . The contiol a = (al ;a,) 1s the

o

vector consisting of the XN players' cont:ois

o ke,

7 The Non-zero Suw Probiem with Disccunted Cests

Let v(s. a) = v(s)al, ,dV) denote tne eape.ted discounted cost

oI a process correspcnding to the admissible introi ¢ ¢ M, and [zt

P

vl(s,a) be its 17" compeonent, 1 = 1, N Ihen vis a) wili: be 3

Lk

the unique solution cf (1), (2) The controi o - M 1s said tc Le
cptimal, that 1s & sclution of the game 2f 1t 15 3 Nash equilibrivm

point of the expected ais:ounted cost functicns, zhat is,

ol 2

vy(s.a) v (s,a,. 0] %5 Clel ay)

ror all s ¢ §, ali i e Ml. and each 1 = 1 N In this <dse

v{s.a) 1s said to be a value of the game

To simpliify cur notation derine

val g(z) - pre) z 1s a Nasch equilibiiusn polad o & -«
ged
vhece Kfi L for 1= N i o i ond Lhe lunction
1 R
- > E;" T T T . Ty e e PR ’ e [
B o+ e T e fain L5101 O thls selllol s i Tlo.ilwWing

A contiii w o M IS Optlmal 11 ald oLy il IdE eanl S L >



which is a continuity point of af(s)

(28) d(s,a(8)) b (s,2(8))v () - Av(s) + c(s,a(s))]

e val {d(s:a)-l[b(e,a)v'(s) - Av(s) + c(s.a)]}
aci
s

where v(s) * v(s,a), and

(29) oj(:(rj;a(rj)) - Yj) = 0 3 =0,1,
where Y. ¢ val c(rj,a) , 3 =0.1
ach
r,
J

Procf. Let a be optimal For arbitrary 1 let a. 1341341

-~ ~

3y be fixed sc that \i(s.a) = inf v (s.al; "ai-l'ai'al+l‘ ,aN)
ajeMy
is the minimal expected discounted cost of an optimal control problem
and a, is one of 1ts optimal controls By Thecrem 6 of Chapter II we
have
<30) d(s_é(s))-l[b(s,é(s))vi(s) - ovi(s) + ¢ (s,a(s))]
= min_ {d(s,a,(s), -,a,," '.;U(s)fl[b(s,a.(s}.' 18,
1 l re A 4 i
a,cA
1 s
C 3 ;! -3 s ; 3 1)
'aN(S))”i(S) v (s) + ci(s;a,(s), Ay 3y (et

for each s ¢ § which 1s a continuity point of éi(s) and
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(31) cj(ci(rj,ﬁ(rj)) - Yij) = 0, = 0,1,

where Yij = min ci(rj,ai(rj),---,ai,'--,aN(r ). = 0,1

i
&a,cA
D
3

j)
Since 1 18 arbitrary, (28) and (29) must be tiue.

Conversely, suppose (28) and (29) hold and let 1 be arbitrary.
Now (30) and (31) must hold, so by Theorem 6 cf Chapter Il we see that
vi(a.é) is the minimal expected discounted cost of the ordinary cptimal
control problem: minimize vi(s.al,"',ai,'-';;N) subject tc a ¢M
Since 1 1s arbicrary, a defines a Nash equilibrium point for this

game.

Theorem 18 is substantially different from Theorem 1l for the
zero sum, two-person game situation Iin one respect. In each case the
necegsary and sufticient condiction is a function or cthe solution to a
differential equation. With Theorem 18, this solution 1s explicicly
a function of some zontrol a ¢ M, whereas in the case of Theorem 1l
the corresponding differential equation solution 1s explicitly indepen-
dent of any control a ¢ M ., Thus, given a control a ¢ M, one can
determine v(s.a) with Theorem 1 and then ascertain whether a(s) 1is
optimal with Theorem 18, Conversely, an optimal control a(s; will
satisfy (28) and (29). However, Theorem 18 does not provide an explicit
procedure for solving the diffusion process non-zero sum, N-person game
problem.

The following computaticual procedure is based upon a method

=33~
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devised by Starr and Ho [21] as well as Case [3] for solving non-zero

sum differential games Let t a (tl;-c~,tN) and u = (ug, = ) and

u
'UN

2N N
define g(s.t,u.,a) : § x E° <~ K+ E by

g(s.t,u,a) = d(s,a)-l[b(s.a)u - it + c(s,a))
Now ccnsider the point-to-set map [ ¢ S » EZN + K defined by

I'(s,t,u) = {ac¢ As!g(s.t,u.a) e val g(s,t u,a)i
acA
s

1f cj >0 for 3 =0 or j =1, then redefine I (r, t,u) so that

j

f(rJ.t,u) = {a ¢ Ar lc(rj,c,u,u) eval c¢(r,,t.u,a)! If r(s,t,u) # ¢

3 asAr J
3
for eacth (s,t.u), then choose a function a(s,t.u) with a(s,t u) =
!(s.t.u) for each (s.t.u), substitute <c(s,v(s),v (s)) for a(s) in
(1) and (2), and solve for v(s) If v(s) exists. then it is a
value of the game. If a(s) = a(s,v(s),v'’s)) 1is piecewise continuous,
then it 1s an cptimal control and v(s) = v(s,a)
Note that this prccedure may break down in three different ways:
i(s t ,u) may not exist, v(s) may not exist. and a(s,v(s),v'(s)) may
not be plecewise continuous The reason why vi(s) may fail to exist,
althcugh a(s.t.u) does 1is that the Euclidean norm of g(s.t,u,a(s,t,u))
may fail to be continuous on S *» EQN . Since most differential equation
theory existence theorems specify some form of continuity requirement.

ccunterexamples can be easily constructed The follcwing proposition

serves to characterize

-94=
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on § x EZN N

Proof. For each {1 =1, -:.X,

2N
[y« 8~ EN xR~ K. by

fi(s,t,u

The continuity of gi(s,t,u,a)

graph D, = {(s,;t,u,a)la

i i

,a)

Proposition 19. If As is continuous on

define the point-to-set map

= arg min g
a cal
i™'s

implies T

€ Fi(s.t.u.a)}

is thus closed because its graph Dl BEER

Proposition 20. Suppose each component i

convex in a, ¢ K for each

i i

*,N). and each t, u ¢ EN. and assume Ai

and i = 1,"-°.N . Then

The proof of Prcposition 20 is omitred because it follows easily

from Rosen {17) and Sion [20]

s € §, each

F'(s.t,u) ¢ o fo

1f Propoesition 20 nolds and the Nash

equilibraium point is unique Ifor each (s,t

§; then

1(5):;ura)

i

18 a closed s2t.

N D 18 closed.

N

of g(s.t,u,a)

a, ¢ K
]

3

r each (s;t,u) ¢ S » E

;u), then the closed map

i(s.t,u) 1is simply a piecewise continuous function

leads to the following existence theorem

N

function g : E ~ EN is said to be diagonally strictly convex for

« 7 K 1f for each ao, al

¢ K

we have
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Following Rosen [17], the

is a closed map

is a closed map- sc its

is quasi-
(3 = 1. < ;4-1 i+l

is convex for each

This observation
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@l - a%Te@% + % - aHTe@y < o

where f(a) = ‘S;""""';

1 N

be diagonally strictly convex is that the symmetric matrix

A sufficient condition that g(a) be

[F(a) + FT(a)] be positive definite for e ¢ K, where T(a) 1s che

Jacobian with respect to a of f(a) <(Rosen [17]).

Theorem 21. Assume A, 1s continuous on S with A: convex for each
s¢S and i =1 -, N Algo assume d(s,a) 1s ccnstant in a. b(s,a)

1s affine in a, and c(s,a) 1s diagcnally strictly convex in a, all

for each s ¢ § . Then a snlution exists for this difiusion process

game .

Proof. The function g(s.t.u,a) 1is strictly diagonally convex, so by

Rosen [17] there exists a unique Nash equilibrium point for each (s;t,u),

that is. by the above remarks (s,t;u) 1s a continuous function cn
2N

S - E . By differential equation theory and the arjuments of Section

3. there exists a solution v(s) vo (1): (2) with ! {(s,v(s).v'(s))
substitutaed for a(s) Hence a solution of the game is a(s) =

f'(s.v(s),v (s)) € M. and the corresponding value of the game 1is

v(s) = v(s.a)

Example. This example 1s a twc-person game. Let the state space and
sets of admissible control values equal the unit anterval Let
d(s,al;az) = 1. b(s,al;a2) =a ta, and ci(s;al,az) = C + ag,

1 =1.2, where € 1is a constant Suppose the boundary conditicn at

~ Q6=
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L is reflection and that absorption occurs at 8 with cest St

Following the above procedure, we have for 1 = 1,2 that ai(s.t,u) =]

for u

1 e U ol

£ 1 and ai(s,t,u) = 0 otherwise By symmetrv we have that

Vl(s) = vz(s) is the solution to

(32) v;(s) = -2al(s,v(s),v'(s))Vi(s) + le(s) - K - al(sfv(s) v (s))

satisfying v'(ro) = 0 and v(rl) = 3 In some neighborhood of r

1 0
we have vi(s) > -1, 80 in this neighborhood a(s,v(s).v'(s)) = (0,0)
/s -/ig
and, for scme constant gq, v(s) = qe fvqe %o af
N -/
e+ e

+ <=, then q can be chosen so that vl(l) =

R I b

and vi(s) > =1 for all s € S, in which case a(s) = (0,0) 4is optimal

: SR
e -8 C
for all s ¢ S . If kl < — + = then for
r1 -% v A ’
vile - e
gome s, € (0,1) we have vi(so) s ~-1 and a(s) - (0.0) optimal for 5

- all s ¢ [0.50) . For vl(s) to exilst, we must have v;(so) < 0 when

al(SO‘V(SO)'V'(SO)) = 1 in (32). But this is easily verificd, so for all
i 8 > 8, in some neighborhood of sy we have a(s) = (1,1) optimal and
N uys u,8 o
J v(s) = tye + t2e + (C + 1)/r, where ul = <1 + 1+ Y,

F u, = -1 - Y1 + ), and cl and tz are constants It remains to show

a(s) = (1,1) 4is optimal for <11 8 > s

0 Suppose not, but that

Sl <1, say, 1s the smallest s > s

vg(sl) < vz(so) < 0, a contradiction. The unknown constants q, tys €

0 such that Vl(sl) = -1 Then

2)
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and 8, can be solved from the boundary conditions and the fact that

v'(s) 15 continuous with v'(so) a =1

8. The Non-zero Sum Problem with Undisounted Costs.

The non-zero sum, N-person diffusion process game probtlem with
undiscounted costs will be one of two types, depending on whether the
boundary conditions are conservative or non-conservative. The results
in this section parallel those of Sections 4 and 7, and,; consequently,
they will be brief. The conservative cagse will be treated in the second
half of this section.

For the purposes of this section, the boundary conditions are
said to be non-conservative if at least one boundary is absorbing and

neither boundary is purely adhesive, that {is,

K, + < 0 . [N . T T A O j = 0,1

Let v(s,a) = v(s.al; ,aN) = v(s) denote the expected undiscounted
cost of such a process corresponding to the admissible control a e M
Then v(s,a) will be the unique solution of (1), (2) with * = O .

The control a : M 1is said to be optimal 1f it defines a Nash equili-

brium point with respect to the expected cost functions, that is,

v (s.a» v. (s, a
1 - i

’ ll“ .'a

. ,a,,4a X
-0 1T i+l N
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for all s ¢ §, all a; € Mi’ and each i = 1, " ,N . 1In this case

v(s,8) 1is saild to be a value of the game.

Theorem 22, With non-conservative boundary conditions, a control a ¢ M

is optimal if and only if for each s ¢ § which is a continuity point

of af(s)

d(s,a(s)) " tb(s,als))v' () + c(s,a(s)))

e val {d(s,a) L[b(s,a)v' (8) + c(s,a)]l ,
acAS

where v(s) = v(s,a), and

Jj(c(rj'a(rj)) - Yj) = 0, 3 =01,

where £ val c(rj,a), 1=0,1.

ach
r

3

'3

The proof is essentially the same as that for Theorem 18, so it
will be omitted. Moreover, the remarks and computational procedure that

follow Theorem 13 apply to this case as well

Example. This example is identical to that of the preceding section

except that <he costs are undiscounted Proceeding in a similar manner,

we have that vl(s) = VZ(S) is the solution to

v{(s) - -Zal(S.V(s).V'(s))Vi(S) - C - al(s.V(s);V'(s))
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satisfying vi(ro) =« 0 and vl(rl) - Al’ and that al(s,v(s);v'(s)) -‘
az(s.v(s).vi(a)) =1 (=0) if v'(8) = =1 (> =1) - If C=<1, then

L+ -she '
If C> 1, then a(s)= (0,0) 3s optimal and v (s) = i, + C/2 + '

a(s) = (0,0) 1is optimal for all s € S and vl(s) - )
1
(C -~ 1)(exp(-2 + 2/C) - 1)/4 = Cs%/2 on [0,1/C), and a(s) = (1,1) .
is optimal and Vl(S) = Ayt (C+ 1)1 - s)/2 + exp(-2 + Z(C)(l -

exp(2 - 28)(C - 1)/4 on (1/C,1]

We now discuss the other type of undiscounted cost problem, the
congervative case For purposes of this section, the boundary conditions
are sald tu be conservative if neither boundary is atsorbing and at

least one boundary is not purely adhesive, that is,

Let 3(a) = S(al. . .aN) = 3 denota the veccter of mean costs per unit
time of such a procass corresponding to the control a ¢ M Then

c(a) 1s the unique vector to which there exists a solution w(s,a) to
(3) and (4). The control a ¢ M 4is said to be optimal it it defines

a Nash equilibriun point with respect to the mean costs, that is,

cplad v an ey anagge ay)
for all ay < Mi' 1= 1, N In this case CJ(a) 1s said to be a

value cf the game.
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Theorem 23. With'conservative boﬁndary condirions a control a e M ds
optimal 1f and only if for each s ¢ S which is a continuity point of

a(s)

d(s.a(s))'l[b(s.a(s))w(s) - G+ c(S.a(sj)J

£ val {d(s,a)-l[b(s,a)w(a) - ¢ + c(s;a)]) .
aeAs ' .

whare w(s) = w(s,a) and 0 = C(a), and

(‘j(c(rjoa(rj)) - lj) = 0 l - 0.1,

where € val c(r

acd
r

j !

[a), 1 =0,1.

3 i

The proof 1is essentially the same as that for Theorem 18, so it

will be omitted. Moreover, the remarks and computational procedure that

follow Theorem 18 apply to this case as well

i
Example This is an example of én N-person game Let § = A& [-1,1]

for 1 =1, - ,N and all s ¢S, d(s,a) = 1. b(s,a) = a) + 0 ta,
and ci(s,a{ = lg| for {1 =1, :‘.N . Suppose retlection occurs at
each boundary. The 1th control ai(s) = -1 if wi(s) - 0 and

ai(s) = 1 otherwise Qy symmetry, wl(s) = - a wN(s) s0 wl(s) is

the solution to
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v
= = = ey —mms o em o e wo: o ien s e o TEmmmE =

}’—Nwl(s) -+ s, hl(s) 20

n\'
k\ Nwl(s) -0+ is,, wl(s) =0

satisfving wl(l) " wl(—l) « (1 ., 3By symmet:i)y we must have wl(O) = 0,

. . 1 1 . . .
§0 we verify that o = TR TR and that for 1 = 1. N
1~e’ ‘
1, s e [-1,0)
a;(s) =

-1, g ¢ (0.1}

9. Application: Control c¢f Polluticn

Supposc that the 1ndex oi poliution {s cunstrained to fall between
zeto and some positive number. This would be the cuse, for example. when
deaiing with an air basin or a body of water Assuice that a Zollection
cf N factories automcbiles, or similar pelluting mechaniims contraibutes
to thas pollution and that each such mechanism can controel this index ct
pollution by choosing the amount of its waste prceducts that 1s emivted as
2 pellucant as cppused to belng processed in a pollution~free manner
Finally. assume that therc exists a cost to each controller fer each

tevel of conticl @3 well as to each value of the pellution index  Then

"
non-zero sum, N-persen diitusion process fafNe may perbaps be uscd as a

redel «f this pollution systemn

This pollution model is & generalization of one in Chapter Il.

-102-
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The state of the process will correspond to the index of pollution, and

the boundary bghavior, at zero and the maximum index value, will be

reflection or possibly reflection combined with adhesion An udmissible
control component ai(s) will be a plecewise continuous function of
the state space that will represent the fraction ot the ilh control-

ler's wasta products that is being emitted as a pollurant Presumably,

the bigger the fracticen of wastes being emitted; the smaller the control

cost rate but the bigger the drift coeffi.ient Similarly, the pigger

the pollution index,; the greater the pollutant cost rate  An coptimal

[ S

control will be an admissible countrol which yields a Nash equilibrium

polnt with respect to the expectad costs.

-

Example This example involves undiscounted costs and N polluting

| mechanisms, Let 8 = A: = [0,1) for {1 =1, N so that the ith

. . - th .
) control component equals the fraction of the i pollucing mechanism's

wagtes that is being processed in a pollution~free mauner Let d(s,a)
. =1, b(s,a) = -ap - - ag and ci(s,a) = Cs + a for 1 =1, N,

and suppose pure reflection occurs at each boundary Ry Theorem 23 we

} have
b}
J 0, \\.'1(5) N
] ajs) =
1, wi(s) 1l
and by symmetry wl(s) = = w, (s) If al(s) =0 for all s ¢ S,
N
,

] then Qi = C/2 and wl(s) = Qis - €s"/2, so this control is optinal if

c -8 On the other lLand, suppose € > 8 a0 that there exist
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0 «s, < s

0 1 < 1 such that wi(so) = wi(sl) =1 and ains) = 1 for all

s € (so,sl) . On ;so,sl] we must have

i Ne Cs + 1 - Gi c -
w.(s) = te  + — -+ =,
: N N .
where t 1is determined from wi(so) = wi(sl) to be ., ;
C(s0 - 51) 5 g
= ——— S ———r et —— < - H
t Nsl Nso ’ _ %{
Nie - e ws :;
% N
since wigso) = 1, we have .-
lVSO -r
- b + R
C(s0 s, e N Cso 1 i, C
0 - = 1,
Ns. Ns 3 N N
. i v N
nle -e -
bug for large enough N this equaticon will not n~ s.tisfied by any ™

Ci > 0 . Hence if C - 8, an optimal conttol may not exist

%

1

10. Application; Optimal Warfare Sirategies

Suppose a war between two antagonists js characterized by an index
that varies continuously between two real numbers ro Ty and this war

is terminated in faver of the first (second) antapgenist when this index

first 2ttains rl(ro) . For exanple, this index could represent the

i
]
]
i




portion of some land mass under the control of the first antagonist as
opposed to being under the control of the second. Or this index could
represent the portion of some population that is allegiant to one govern-
ment as opposcd to being allegiant to a second. Suppose each antagonist
can control this index by choosing alternative levels of fighting effort.
Finally, suppose costs to each antagonist are associated with each of the
two possible outcomes as well as with alternative levels of fighting
effort and the index value. Then the problem of determinig the optimal
level of fighting for these two antagonists can perhaps be resolved by
consideration of a non-zero sum, two-person diffusion process game.

The state of the diffusion process will correspond to the v 1xe
index, and the boundary behavior, at r, and s will be absorption
or possible absorption combined with another type of boundary phenomenon.
Let the termination costs at each boundary be positive for the loser and
negative for the winner. Let the control represent levels of fighting
affort for the two players so that each player’s continuous movement cost
represents the cost to him of the fighting levels and warfare index
‘being at particulé; values for one unit of time If a termination at
boundary ¥, Tepresents victory for player one. then presumably the
bigger the firsr (second) plaver's control the greater the tendency for

the warfare index te increase (decrease}. Similarly, the greater the

level of fighting the greater the continuocus ovenment cost.

Example. let § = A: = {01] and suppose d(s.a) =1, b(s,a) = a; - a,,
aad ci(s.a) -3, for { = 1,2 . Assuze the bcundary behavior 1s ab-

sorption and that termination at :j represents defeat for player
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j+1, where j = 0,1, with termination cost C > 0 for the loser
and =-C for the winner. Finally, suppose the costs are undiscounted,
so we consider Theorem 22.

By symmetry we must have al(s) = a,(1 -s) and vl(s) = v2(l - 8)
for all s ¢ S . Moreover, al(s) = (0 if vi(s) > -1 and al(s) = ]
otherwise. If C :_%— and a(s) = (0,0), then vl(a) = «2Cs + C so
vi(s) 2 =1 and a(s) = (0,0) 1is optimal, If C i% and a(s) = (1,1),

2
then v,(s) = :E— + (=2C + %)s + C so vi(s) <=1 and a(s) = (1,1) s

cptimal. Finally, 1f % < C < %, then the following argument will show
that for some 8y € (O,% vhere vi(so) = -1 we have al(s) = 0 optimal

on [0,50) and al(s) = 1 optimal on (so,l] . On (0,30) we have

= s~8,
a(s) = (0,1), so vl(s) =C+ e - e . On (so,l -~ 80) we have
a(s) = (L.1);, so
-5
1 2, .. 0,
vl(s) = "5(5 - sO) + C+ e + sg - l -5
On (1 - so,l) we have a{s) = (1,0), so
-s l-s -5

vl(s) = 530 - % - 2502 + C+ e 0 + (1 - ZSO)e 0 -3
Soving the equation vl(l) = -C yields a unique soltuion for o £ (O,%)
if % < €~ g, 8o we are done provided a(s) 1is optimal. The function
vl(s) is concave ¢~ {9,1 - so) and convex on (1 - so,l], §0

vi(s) > =1 on [O.SG) and vi(s) <=1 on (50,1] provided vi(l)

< =1 . This last inequality 1is true, so a(s) 1is optimal,
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